Development and validation of a model predicting mild stroke severity on admission using electronic health record data

被引:2
|
作者
Waddell, Kimberly J. [1 ,2 ,3 ]
Myers, Laura J. [4 ,5 ,6 ]
Perkins, Anthony J. [4 ,6 ,7 ,8 ]
Sico, Jason J. [9 ,10 ,11 ,12 ]
Sexson, Ali [4 ]
Burrone, Laura [12 ]
Taylor, Stanley [4 ,6 ]
Koo, Brian [9 ,10 ,11 ,12 ]
Daggy, Joanne K. [4 ,6 ,7 ,8 ]
Bravata, Dawn M. [4 ,5 ,6 ,13 ,14 ]
机构
[1] Crescenz VA Med Ctr, VA Ctr Hlth Equ Res & Promot CHERP, Philadelphia, PA USA
[2] Univ Penn, Perelman Sch Med, Dept Phys Med & Rehabil, Philadelphia, PA USA
[3] Univ Penn, Leonard Davis Inst Hlth Econ, Philadelphia, PA USA
[4] Richard L Roudebush VA Med Ctr, VA HSR &D Ctr Hlth Informat & Commun CH, Indianapolis, IN USA
[5] Indiana Univ Sch Med, Dept Med, Indianapolis, IN USA
[6] Expanding Expertise Ehlth Network Dev EXTEND, Dept Vet Affairs VA Hlth Serv Res & Dev HSR&D, Qual Enhancement Res Initiat QUERI, Indianapolis, IN USA
[7] Indiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN USA
[8] Fairbanks Sch Publ Hlth, Indianapolis, IN USA
[9] VA Connecticut Healthcare Syst, Neurol Serv, West Haven, CT USA
[10] Yale Sch Med, Dept Neurol, New Haven, CT USA
[11] Yale Sch Med, Dept Internal Med, New Haven, CT USA
[12] VA Connecticut Healthcare Syst, Pain Res Informat & Multimorbid & Educ PRIME Ctr, West Haven, CT USA
[13] Indiana Univ Sch Med, Dept Neurol, Indianapolis, IN USA
[14] Regenstrief Inst Hlth Care, Indianapolis, IN USA
来源
关键词
Stroke; National Institutes of Health Stroke Scale; Prediction; Electronic health record; MEDICARE BENEFICIARIES; 30-DAY MORTALITY; ISCHEMIC-STROKE; SCALE;
D O I
10.1016/j.jstrokecerebrovasdis.2023.107255
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Objective: Initial stroke severity is a potent modifier of stroke outcomes but this information is difficult to obtain from electronic health record (EHR) data. This limits the ability to risk-adjust for evaluations of stroke care and outcomes at a population level. The purpose of this analysis was to develop and validate a predictive model of initial stroke severity using EHR data elements.Methods: This observational cohort included individuals admitted to a US Department of Veterans Affairs hospital with an ischemic stroke. We extracted 65 independent predictors from the EHR. The primary analysis modeled mild (NIHSS score 0-3) versus moderate/severe stroke (NIHSS score & GE;4) using multiple logistic regression. Model validation included: (1) splitting the cohort into derivation (65%) and validation (35%) samples and (2) evaluating how the predicted stroke severity performed in regard to 30-day mortality risk stratification.Results: The sample comprised 15,346 individuals with ischemic stroke (n = 10,000 derivation; n = 5,346 validation). The final model included 15 variables and correctly classified 70.4% derivation sample patients and 69.4% validation sample patients. The areas under the curve (AUC) were 0.76 (derivation) and 0.76 (validation). In the validation sample, the model performed similarly to the observed NIHSS in terms of the association with 30-day mortality (AUC: 0.72 observed NIHSS, 0.70 predicted NIHSS).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Recurrent neural network models (CovRNN) for predicting outcomes of patients with COVID-19 on admission to hospital: model development and validation using electronic health record data
    Rasmy, Laila
    Nigo, Masayuki
    Kannadath, Bijun Sai
    Xie, Ziqian
    Mao, Bingyu
    Patel, Khush
    Zhou, Yujia
    Zhang, Wanheng
    Ross, Angela
    Xu, Hua
    Zhi, Degui
    LANCET DIGITAL HEALTH, 2022, 4 (06): : E415 - E425
  • [2] Development and validation of an asthma exacerbation prediction model using electronic health record (EHR) data
    Martin, Alfred
    Bauer, Victoria
    Datta, Avisek
    Masi, Christopher
    Mosnaim, Giselle
    Solomonides, Anthony
    Rao, Goutham
    JOURNAL OF ASTHMA, 2020, 57 (12) : 1339 - 1346
  • [3] Assessing stroke severity using electronic health record data: a machine learning approach
    Emily Kogan
    Kathryn Twyman
    Jesse Heap
    Dejan Milentijevic
    Jennifer H. Lin
    Mark Alberts
    BMC Medical Informatics and Decision Making, 20
  • [4] Assessing stroke severity using electronic health record data: a machine learning approach
    Kogan, Emily
    Twyman, Kathryn
    Heap, Jesse
    Milentijevic, Dejan
    Lin, Jennifer H.
    Alberts, Mark
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2020, 20 (01)
  • [5] Predicting post-stroke cognitive impairment using electronic health record data
    Ashburner, Jeffrey M.
    Chang, Yuchiao
    Porneala, Bianca
    Singh, Sanjula D.
    Yechoor, Nirupama
    Rosand, Jonathan M.
    Singer, Daniel E.
    Anderson, Christopher D.
    Atlas, Steven J.
    INTERNATIONAL JOURNAL OF STROKE, 2024, 19 (08) : 898 - 906
  • [6] PREDICTING BACTEREMIA USING ELECTRONIC HEALTH RECORD DATA
    Lonjers, Zachary
    Bhavani, Sivasubramanium
    Carey, Kyle
    Gilbert, Emily
    Afshar, Majid
    Churpek, Matthew
    CHEST, 2019, 156 (04) : 1607A - 1607A
  • [7] Development and validation of machine learning models to predict MDRO colonization or infection on ICU admission by using electronic health record data
    Li, Yun
    Cao, Yuan
    Wang, Min
    Wang, Lu
    Wu, Yiqi
    Fang, Yuan
    Zhao, Yan
    Fan, Yong
    Liu, Xiaoli
    Liang, Hong
    Yang, Mengmeng
    Yuan, Rui
    Zhou, Feihu
    Zhang, Zhengbo
    Kang, Hongjun
    ANTIMICROBIAL RESISTANCE AND INFECTION CONTROL, 2024, 13 (01):
  • [8] Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records
    Rahimian, Fatemeh
    Salimi-Khorshidi, Gholamreza
    Payberah, Amir H.
    Tran, Jenny
    Solares, Roberto Ayala
    Raimondi, Francesca
    Nazarzadeh, Milad
    Canoy, Dexter
    Rahimi, Kazem
    PLOS MEDICINE, 2018, 15 (11)
  • [9] Development and validation of an electronic frailty index using routine primary care electronic health record data
    Clegg, Andrew
    Bates, Chris
    Young, John
    Ryan, Ronan
    Nichols, Linda
    Teale, Elizabeth Ann
    Mohammed, Mohammed A.
    Parry, John
    Marshall, Tom
    AGE AND AGEING, 2016, 45 (03) : 353 - 360
  • [10] Development and validation of a dynamic inpatient risk prediction model for clinically significant hypokalemia using electronic health record data
    Li, Yan
    Staley, Benjamin
    Henriksen, Carl
    Xu, Dandan
    Lipori, Gloria
    Winterstein, Almut G.
    AMERICAN JOURNAL OF HEALTH-SYSTEM PHARMACY, 2019, 76 (05) : 301 - 311