Path isomorphisms between quiver Hecke and diagrammatic Bott-Samelson endomorphism algebras

被引:2
|
作者
Bowman, Chris [1 ]
Cox, Anton [2 ]
Hazi, Amit [1 ]
机构
[1] Univ York, Dept Math, York YO10, England
[2] Univ London, Dept Math, London, England
基金
英国工程与自然科学研究理事会;
关键词
Quiver Hecke algebra; Bott Samelson bimodules; Symmetric group; p-Kazhdan-Lusztig polynomial; GRADED CELLULAR BASES; BLOB ALGEBRA;
D O I
10.1016/j.aim.2023.109185
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an explicit isomorphism between (truncations of) quiver Hecke algebras and Elias-Williamson's diagram-matic endomorphism algebras of Bott-Samelson bimodules. As a corollary, we deduce that the decomposition numbers of these algebras (including as examples the symmetric groups and generalised blob algebras) are tautologically equal to the associated p-Kazhdan-Lusztig polynomials, provided that the characteristic is greater than the Coxeter number. We hence give an elementary and more explicit proof of the main the-orem of Riche-Williamson's recent monograph and extend their categorical equivalence to cyclotomic quiver Hecke al-gebras, thus solving Libedinsky-Plaza's categorical blob con-jecture.& COPY; 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:106
相关论文
共 9 条