A Kinetic Flux Difference Splitting method for compressible flows

被引:4
|
作者
Shrinath, K. S. [1 ,2 ]
Maruthi, N. H. [3 ]
Rao, S. V. Raghurama [4 ]
Rao, Veeredhi Vasudeva [5 ]
机构
[1] Indian Inst Sci, Dept Aerosp Engn, Bangalore, India
[2] Hindustan Aeronaut Ltd HAL, Bangalore, India
[3] SankhyaSutra Labs, Manyata Embassy Business Pk, Bangalore, India
[4] Indian Inst Sci, Dept Aerosp Engn, Bangalore, India
[5] Univ South Africa UNISA, Dept Mech & Ind Engn, Johannesburg, South Africa
关键词
Discrete velocity Boltzmann scheme; Kinetic Flux Difference Splitting; Exact discontinuity capturing; Relative entropy (Kullback-Liebler divergence); RIEMANN SOLVER; SCHEMES; SYSTEMS;
D O I
10.1016/j.compfluid.2022.105702
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A low diffusive flux difference splitting based kinetic scheme is developed based on a discrete velocity Boltzmann equation, with a novel three velocity model. While two discrete velocities are used for upwinding, the third discrete velocity is utilized to introduce appropriate additional numerical diffusion only in the expansion regions, identified using relative entropy (Kullback-Liebler divergence) at the cell-interface, along with the estimation of physical entropy. This strategy provides an interesting alternative to entropy fix, which is typically needed for low diffusive schemes. Grid-aligned steady discontinuities are captured exactly by fixing the primary numerical diffusion such that flux equivalence leads to zero numerical diffusion across discontinuities. Results for bench-mark test problems are presented for inviscid and viscous compressible flows.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Modified kinetic flux vector splitting schemes for compressible flows
    Chen, Yibing
    Jiang, Song
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (10) : 3582 - 3604
  • [2] Modified kinetic flux vector splitting (m-KFVS) method for compressible flows
    Anil, N.
    Rajan, N. K. S.
    Deshpande, S. M.
    COMPUTERS & FLUIDS, 2011, 48 (01) : 137 - 149
  • [3] A low diffusion flux splitting method for inviscid compressible flows
    Xie, Wenjia
    Li, Hua
    Tian, Zhengyu
    Pan, Sha
    COMPUTERS & FLUIDS, 2015, 112 : 83 - 93
  • [4] A new diffusion-regulated flux splitting method for compressible flows
    Kalita, Paragmoni
    Sarmah, Sidharth
    COMPUTERS & FLUIDS, 2019, 192
  • [5] A simple flux splitting scheme for compressible flows
    Rossow, CC
    NEW RESULTS IN NUMERICAL AND EXPERIMENTAL FLUID MECHANICS II, 1999, 72 : 355 - 362
  • [6] COMPUTATION OF STEADY SUPERSONIC FLOWS BY A FLUX-DIFFERENCE SPLITTING METHOD
    PANDOLFI, M
    COMPUTERS & FLUIDS, 1985, 13 (01) : 37 - 46
  • [7] A flux-splitting scheme for compressible and incompressible flows
    Rossow, CC
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 164 (01) : 104 - 122
  • [8] Computing unsteady compressible flows using Roe's flux-difference splitting scheme on GPUs
    Tuttafesta, Michele
    Colonna, Gianpiero
    Pascazio, Giuseppe
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (06) : 1497 - 1510
  • [9] Kinetic meshless method for compressible flows
    Praveen, C.
    Deshpande, S. M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 55 (11) : 1059 - 1089
  • [10] A hybrid flux splitting method for compressible flow
    Guo, Shaolong
    Tao, Wen-Quan
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2018, 73 (01) : 33 - 47