3D Printed Chondrogenic Functionalized PGS Bioactive Scaffold for Cartilage Regeneration

被引:15
|
作者
Wang, Sinan [1 ,2 ]
Luo, Bin [3 ]
Bai, Baoshuai [2 ]
Wang, Qianyi [1 ]
Chen, Hongying [1 ]
Tan, Xiaoyan [1 ]
Tang, Zhengya [1 ]
Shen, Sisi [1 ]
Zhou, Hengxing [2 ]
You, Zhengwei [3 ]
Zhou, Guangdong [1 ]
Lei, Dong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Sch Med, Dept Cardiol,Dept Plast & Reconstruct Surg, Shanghai 200011, Peoples R China
[2] Shandong Univ, Qilu Hosp, Ctr Orthopaed, Adv Med Res Inst,Cheeloo Coll Med,Dept Orthopaed, Jinan 250012, Peoples R China
[3] Donghua Univ, Inst Funct Mat, Coll Mat Sci & Engn, Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
3D printing; cartilage regeneration; functionalized scaffolds; poly(glycerol sebacate); swelling absorption; TISSUE; BONE; ELASTOMER; POLYMER; REPAIR;
D O I
10.1002/adhm.202301006
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Tissue engineering is emerging as a promising approach for cartilage regeneration and repair. Endowing scaffolds with cartilaginous bioactivity to obtain bionic microenvironment and regulating the matching of scaffold degradation and regeneration play a crucial role in cartilage regeneration. Poly(glycerol sebacate) (PGS) is a representative thermosetting bioelastomer known for its elasticity, biodegradability, and biocompatibility and is widely used in tissue engineering. However, the modification and drug loading of the PGS scaffold is still a key challenge due to its high temperature curing conditions and limited reactive groups, which seriously hinders its further functional application. Here, a simple versatile new strategy of super swelling-absorption and cross-linked networks locking is presented to successfully create the 3D printed PGS-CS/Gel scaffold for the first time based on FDA-approved PGS, gelatin (Gel) and chondroitin sulfate (CS). The PGS-CS/Gel scaffold exhibits the desirable synergistic properties of well-organized hierarchical structures, excellent elasticity, improved hydrophilicity, and cartilaginous bioactivity, which can promote the adhesion, proliferation, and migration of chondrocytes. Importantly, the rate of cartilage regeneration can be well-matched with degradation of PGS-CS/Gel scaffold, and achieve uniform and mature cartilage tissue without scaffold residual. The bioactive scaffold can successfully repair cartilage in a rabbit trochlear groove defect model indicating a promising prospect of clinical transformation.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Gelatin-modified 3D printed PGS elastic hierarchical porous scaffold for cartilage regeneration
    Wang, Sinan
    Chen, Hongying
    Huang, Jinyi
    Shen, Sisi
    Tang, Zhengya
    Tan, Xiaoyan
    Lei, Dong
    Zhou, Guangdong
    APL BIOENGINEERING, 2023, 7 (03)
  • [2] Integrating cold atmospheric plasma with 3D printed bioactive nanocomposite scaffold for cartilage regeneration
    Lee, Se-jun
    Yan, Dayun
    Zhou, Xuan
    Cui, Haitao
    Esworthy, Timothy
    Hann, Sung Yun
    Keidar, Michael
    Zhang, Lijie Grace
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 111
  • [3] Lithium Chloride-Releasing 3D Printed Scaffold for Enhanced Cartilage Regeneration
    Li, Jiayi
    Yao, Qingqiang
    Xu, Yan
    Zhang, Huikang
    Li, Liang-liang
    Wang, Liming
    MEDICAL SCIENCE MONITOR, 2019, 25 : 4041 - 4050
  • [4] Design of a Novel 3D Printed Bioactive Nanocomposite Scaffold for Improved Osteochondral Regeneration
    Castro, Nathan J.
    Patel, Romil
    Zhang, Lijie Grace
    CELLULAR AND MOLECULAR BIOENGINEERING, 2015, 8 (03) : 416 - 432
  • [5] Design of a Novel 3D Printed Bioactive Nanocomposite Scaffold for Improved Osteochondral Regeneration
    Nathan J. Castro
    Romil Patel
    Lijie Grace Zhang
    Cellular and Molecular Bioengineering, 2015, 8 : 416 - 432
  • [6] 3D Printed Enzyme-Functionalized Scaffold Facilitates Diabetic Bone Regeneration
    Yang, Chen
    Zheng, Zhiwei
    Younis, Muhammad Rizwan
    Dong, Chenle
    Chen, Yahong
    Lei, Shan
    Zhang, Dong-Yang
    Wu, Jiayingzi
    Wu, Xueqing
    Lin, Jing
    Wang, Xiansong
    Huang, Peng
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (20)
  • [7] DEVELOPMENT OF 3D PRINTED SCAFFOLD FOR OSTEOCHONDRAL REGENERATION
    Verisqa, Fiona
    Cha, Jae-Ryung
    Nguyen, Linh
    Kim, Hae-Won
    Knowles, Jonathan
    TISSUE ENGINEERING PART A, 2022, 28 : S248 - S249
  • [8] 3D bio-printed proteinaceous bioactive scaffold loaded with dual growth factor enhanced chondrogenesis and in situ cartilage regeneration
    Shanto, Prayas Chakma
    Park, Seongsu
    Al Fahad, Md Abdullah
    Park, Myeongki
    Lee, Byong-Taek
    BIOACTIVE MATERIALS, 2025, 46 : 365 - 385
  • [9] 3D printed hydrogel for articular cartilage regeneration
    Yang, Xue
    Li, Shuai
    Ren, Ya
    Qiang, Lei
    Liu, Yihao
    Wang, Jinwu
    Dai, Kerong
    COMPOSITES PART B-ENGINEERING, 2022, 237
  • [10] Electrospun/3D-printed PCL bioactive scaffold for bone regeneration
    Rosales-Ibanez, Raul
    Viera-Ruiz, Alejandro Emmanuel
    Cauich-Rodriguez, Juan Valerio
    Carrillo-Escalante, Hugo Joel
    Gonzalez-Gonzalez, Arely
    Rodriguez-Martinez, Jesus Jiovanni
    Hernandez-Sanchez, Fernando
    POLYMER BULLETIN, 2023, 80 (03) : 2533 - 2552