Unraveling the Dynamics of Singular Stochastic Solitons in Stochastic Fractional Kuramoto-Sivashinsky Equation

被引:16
|
作者
Al-Sawalha, M. Mossa [1 ]
Yasmin, Humaira [2 ]
Shah, Rasool [3 ]
Ganie, Abdul Hamid [4 ]
Moaddy, Khaled [5 ]
机构
[1] Univ Hail, Coll Sci, Dept Math, Hail, Saudi Arabia
[2] King Faisal Univ, Dept Basic Sci, Preparatory Year Deanship, Al Hasa 31982, Saudi Arabia
[3] Lebanese Amer Univ, Dept Comp Sci & Math, POB 13-5053, Beirut, Lebanon
[4] Saudi Elect Univ, Coll Sci & Theoret Studies, Basic Sci Dept, Riyadh 11673, Saudi Arabia
[5] Shaqra Univ, Coll Sci & Humanities, Dept Math, Shaqra 11691, Saudi Arabia
关键词
FPDEs; stochastic fractional Kuramoto-Sivashinsky equation; conformable fractional derivative; solitons; singular solutions; shocks; kinks; SOLITARY WAVE SOLUTIONS;
D O I
10.3390/fractalfract7100753
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work investigates the complex dynamics of the stochastic fractional Kuramoto-Sivashinsky equation (SFKSE) with conformable fractional derivatives. The research begins with the creation of singular stochastic soliton solutions utilizing the modified extended direct algebraic method (mEDAM). Comprehensive contour, 3D, and 2D visual representations clearly depict the categorization of these stochastic soliton solutions as kink waves or shock waves, offering a clear description of these soliton behaviors within the context of the SFKSE framework. The paper also illustrates the flexibility of the transformation-based approach mEDAM for investigating soliton occurrence not only in SFKSE but also in a wide range of nonlinear fractional partial differential equations (FPDEs). Furthermore, the analysis considers the effect of noise, specifically Brownian motion, on soliton solutions and wave dynamics, revealing the significant influence of randomness on the propagation, generation, and stability of soliton in complex stochastic systems and advancing our understanding of extreme behaviors in scientific and engineering domains.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] On the stochastic Kuramoto-Sivashinsky equation
    Duan, JQ
    Ervin, VJ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 44 (02) : 205 - 216
  • [2] Dynamics for the stochastic nonlocal Kuramoto-Sivashinsky equation
    Yang, Desheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (01) : 550 - 570
  • [3] Invariant measures for a stochastic Kuramoto-Sivashinsky equation
    Ferrario, Benedetta
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2008, 26 (02) : 379 - 407
  • [4] On a nonlocal stochastic Kuramoto-Sivashinsky equation with jumps
    Bo, Lijun
    Shi, Kehua
    Wang, Yongjin
    STOCHASTICS AND DYNAMICS, 2007, 7 (04) : 439 - 457
  • [5] Stochastic optimal prediction for the Kuramoto-Sivashinsky equation
    Stinis, P
    MULTISCALE MODELING & SIMULATION, 2004, 2 (04): : 580 - 612
  • [6] Random attractors for the stochastic Kuramoto-Sivashinsky equation
    Yang, Desheng
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2006, 24 (06) : 1285 - 1303
  • [7] Moderate deviations for stochastic Kuramoto-Sivashinsky equation
    Rose, Gregory Amali Paul
    Suvinthra, Murugan
    Balachandran, Krishnan
    STOCHASTICS AND DYNAMICS, 2022, 22 (06)
  • [8] Kolmogorov equation associated to a stochastic Kuramoto-Sivashinsky equation
    Yang, Desheng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (04) : 869 - 895
  • [9] The Analytical Solutions of the Stochastic Fractional Kuramoto-Sivashinsky Equation by Using the Riccati Equation Method
    Mohammed, Wael W.
    Albalahi, A. M.
    Albadrani, S.
    Aly, E. S.
    Sidaoui, R.
    Matouk, A. E.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [10] Controlling roughening processes in the stochastic Kuramoto-Sivashinsky equation
    Gomes, S. N.
    Kalliadasis, S.
    Papageorgiou, D. T.
    Pavliotis, G. A.
    Pradas, M.
    PHYSICA D-NONLINEAR PHENOMENA, 2017, 348 : 33 - 43