RANK-ONE TRANSFORMATIONS,ODOMETERS, AND FINITE FACTORS

被引:3
|
作者
Foreman, Matthew [1 ]
Gao, Su [2 ,3 ]
Hill, Aaron [4 ]
Silva, Cesar E. [5 ]
Weiss, Benjamin [6 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[4] Proof Sch, 973 Mission St, San Francisco, CA 94103 USA
[5] Williams Coll, Dept Math & Stat, Williamstown, MA 01267 USA
[6] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
关键词
D O I
10.1007/s11856-022-2451-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give explicit characterizations, based on the cutting and spacer parameters, of (a) which rank-one transformations factor onto a given finite cyclic permutation, (b) which rank-one transformations factor onto a given odometer, and (c) which rank-one transformations are isomorphic to a given odometer. These naturally yield characterizations of (d) which rank-one transformations factor onto some (unspecified) finite cyclic permutation, (d') which rank-one transformations are totally ergodic, (e) which rank-one transformations factor onto some (unspecified) odometer, and (f) which rank-one transformations are isomorphic to some (unspecified) odometer.
引用
收藏
页码:231 / 249
页数:19
相关论文
共 50 条
  • [1] Rank-one transformations, odometers, and finite factors
    Matthew Foreman
    Su Gao
    Aaron Hill
    Cesar E. Silva
    Benjamin Weiss
    Israel Journal of Mathematics, 2023, 255 : 231 - 249
  • [2] Mixing on rank-one transformations
    Creutz, Darren
    Silva, Cesar E.
    STUDIA MATHEMATICA, 2010, 199 (01) : 43 - 72
  • [3] Mixing on a class of rank-one transformations
    Creutz, D
    Silva, CE
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 : 407 - 440
  • [4] Rank-one weak mixing for nonsingular transformations
    Terrence Adams
    Nathaniel Friedman
    Cesar E. Silva
    Israel Journal of Mathematics, 1997, 102 : 269 - 281
  • [5] Rank-one weak mixing for nonsingular transformations
    Adams, T
    Friedman, N
    Silva, CE
    ISRAEL JOURNAL OF MATHEMATICS, 1997, 102 (1) : 269 - 281
  • [6] DISJOINTNESS BETWEEN BOUNDED RANK-ONE TRANSFORMATIONS
    Gao, Su
    Hill, Aaron
    COLLOQUIUM MATHEMATICUM, 2021, 164 (01) : 91 - 121
  • [7] A new class of rank-one transformations with singular spectrum
    El Abdalaoui, El Houcein
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 1541 - 1555
  • [8] RANK-ONE FLOWS OF TRANSFORMATIONS WITH INFINITE ERGODIC INDEX
    Danilenko, Alexandre I.
    Park, Kyewon K.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (01) : 201 - 207
  • [9] Weakly mixing rank-one transformations conjugate to their squares
    Danilenko, Alexandre I.
    STUDIA MATHEMATICA, 2008, 187 (01) : 75 - 93
  • [10] Subsequence bounded rational ergodicity of rank-one transformations
    Bozgan, Francisc
    Sanchez, Anthony
    Silva, Cesar E.
    Stevens, David
    Wang, Jane
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2015, 30 (01): : 70 - 84