Deep Learning for Detection and Localization of B-Lines in Lung Ultrasound

被引:11
|
作者
Lucassen, Ruben T. [1 ,2 ]
Jafari, Mohammad H. [1 ]
Duggan, Nicole M. [3 ]
Jowkar, Nick [1 ]
Mehrtash, Alireza [1 ]
Fischetti, Chanel [3 ]
Bernier, Denie [3 ]
Prentice, Kira [4 ]
Duhaime, Erik P. [4 ]
Jin, Mike [1 ]
Abolmaesumi, Purang [5 ]
Heslinga, Friso G. [6 ]
Veta, Mitko
Duran-Mendicuti, Maria A. [1 ]
Frisken, Sarah [1 ]
Shyn, Paul B. [1 ]
Golby, Alexandra J.
Boyer, Edward [3 ]
Wells, William M. [1 ]
Goldsmith, Andrew J. [3 ,7 ,8 ]
Kapur, Tina [1 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiol, Boston, MA 02115 USA
[2] Eindhoven Univ Technol, Dept Biomed Engn, NL-5612 Eindhoven, Netherlands
[3] Brigham & Womens Hosp, Dept Emergency Med, Boston, MA 02115 USA
[4] Centaur Labs, Boston, MA 02116 USA
[5] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V5T 1Z4, Canada
[6] Eindhoven Univ Technol, Dept Biomed Engn, NL-5612 Eindhoven, Netherlands
[7] Harvard Med Sch, Brigham & Womens Hosp, Dept Neurosurg, Boston, MA 02115 USA
[8] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiol, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
Videos; Lung; Location awareness; COVID-19; Ultrasonic imaging; Annotations; Image segmentation; Lung ultrasound; B-lines; deep learning; heart failure; PULMONARY-EDEMA; COVID-19; PATIENTS; HEART-FAILURE; DIAGNOSIS; ULTRASONOGRAPHY; CONGESTION; IMAGES;
D O I
10.1109/JBHI.2023.3282596
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lung ultrasound (LUS) is an important imaging modality used by emergency physicians to assess pulmonary congestion at the patient bedside. B-line artifacts in LUS videos are key findings associated with pulmonary congestion. Not only can the interpretation of LUS be challenging for novice operators, but visual quantification of B-lines remains subject to observer variability. In this work, we investigate the strengths and weaknesses of multiple deep learning approaches for automated B-line detection and localization in LUS videos. We curate and publish, BEDLUS, a new ultrasound dataset comprising 1,419 videos from 113 patients with a total of 15,755 expert-annotated B-lines. Based on this dataset, we present a benchmark of established deep learning methods applied to the task of B-line detection. To pave the way for interpretable quantification of B-lines, we propose a novel "single-point" approach to B-line localization using only the point of origin. Our results show that (a) the area under the receiver operating characteristic curve ranges from 0.864 to 0.955 for the benchmarked detection methods, (b) within this range, the best performance is achieved by models that leverage multiple successive frames as input, and (c) the proposed single-point approach for B-line localization reaches an F-1-score of 0.65, performing on par with the inter-observer agreement. The dataset and developed methods can facilitate further biomedical research on automated interpretation of lung ultrasound with the potential to expand the clinical utility.
引用
收藏
页码:4352 / 4361
页数:10
相关论文
共 50 条
  • [1] Automatic Detection of B-Lines in In Vivo Lung Ultrasound
    Moshavegh, Ramin
    Hansen, Kristoffer Lindskov
    Moller-Sorensen, Hasse
    Nielsen, Michael Bachmann
    Jensen, Jorgen Arendt
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2019, 66 (02) : 309 - 317
  • [2] Lung ultrasound and B-lines: B careful!
    M. E. Haaksma
    J. M. Smit
    M. L. A. Heldeweg
    L. Pisani
    P. Elbers
    P. R. Tuinman
    Intensive Care Medicine, 2020, 46 : 544 - 545
  • [3] Lung ultrasound and B-lines: B careful!
    Haaksma, M. E.
    Smit, J. M.
    Heldeweg, M. L. A.
    Pisani, L.
    Elbers, P.
    Tuinman, P. R.
    INTENSIVE CARE MEDICINE, 2020, 46 (03) : 544 - 545
  • [4] SOURCES OF VARIABILITY IN THE DETECTION OF B-LINES, USING LUNG ULTRASOUND
    Pivetta, Emanuele
    Baldassa, Federico
    Masellis, Serena
    Bovaro, Federica
    Lupia, Enrico
    Maule, Milena M.
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2018, 44 (06): : 1212 - 1216
  • [5] Automatic Detection of B-lines in Lung Ultrasound Videos from Severe Dengue Patients
    Kerdegari, Hamideh
    Nhat, Phung Tran Huy
    McBride, Angela
    Razavi, Reza
    Van Hao, Nguyen
    Thwaites, Louise
    Yacoub, Sophie
    Gomez, Alberto
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 989 - 993
  • [6] Interpreting Lung Ultrasound B-Lines in Acute Respiratory Failure
    Volpicelli, Giovanni
    CHEST, 2014, 146 (06) : E230 - E230
  • [7] Lung Ultrasound in ARDS: B-lines Pattern and Shred Sign
    Moreno, Juan Francisco Munoz
    Prieto, Ester Rubio
    Martin, Maria angela Magro
    ARCHIVOS DE BRONCONEUMOLOGIA, 2024, 60 (03): : 180 - 180
  • [8] Prognostic Value of Lung Ultrasound B-Lines in Systemic Sclerosis
    Gargani, Luna
    Bruni, Cosimo
    Romei, Chiara
    Frumento, Paolo
    Moreo, Antonella
    Agoston, Gergely
    Guiducci, Serena
    Bellando-Randone, Silvia
    Lepri, Gemma
    Belloli, Laura
    Della Rossa, Alessandra
    Delle Sedie, Andrea
    Stagnaro, Chiara
    De Nes, Michele
    Salvadori, Stefano
    Mosca, Marta
    Falaschi, Fabio
    Epis, Oscar
    Picano, Eugenio
    Matucci-Cerinic, Marco
    CHEST, 2020, 158 (04) : 1515 - 1525
  • [9] Machine Learning Algorithm Detection of Confluent B-Lines
    Baloescu, Cristiana
    Rucki, Agnieszka A.
    Chen, Alvin
    Zahiri, Mohsen
    Ghoshal, Goutam
    Wang, Jing
    Chew, Rita
    Kessler, David
    Chan, Daniela K. I.
    Hicks, Bryson
    Schnittke, Nikolai
    Shupp, Jeffrey
    Gregory, Kenton
    Raju, Balasundar
    Moore, Christopher
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2023, 49 (09): : 2095 - 2102
  • [10] Localizing B-Lines in Lung Ultrasonography by Weakly Supervised Deep Learning, In-Vivo Results
    van Sloun, Ruud J. G.
    Demi, Libertario
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (04) : 957 - 964