Experimental Results for a Low-Reynolds-Number Airfoil in a Low-Turbulence Wind Tunnel

被引:0
|
作者
Maughmer, Mark D. [1 ]
Axten, Christopher J. [1 ]
Metkowski, Leonard P. [1 ]
机构
[1] Penn State Univ, Dept Aerosp Engn, University Pk, PA 16802 USA
来源
JOURNAL OF AIRCRAFT | 2023年 / 60卷 / 06期
关键词
Drag Coefficient; Airfoil; Low Turbulence Pressure Tunnel; Aerodynamic Performance; Flight Control Surfaces; Aircraft Wing Design; Boundary Layer Transition; Low-Reynolds-Number Aerodynamics;
D O I
10.2514/1.C036705
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The Pennsylvania State University (PSU) 94-097 airfoil was originally designed in the mid-1990s for use on winglets of high-performance sailplanes. This design problem is difficult because this application requires the airfoil to operate over a wide range of Reynolds numbers, from 0.7x10(5) to 1.0x10(6). At that time, over two decades ago, to validate the tools as well as the design itself, high-quality measurements of section characteristics and pressure distributions were made in the PSU low-speed low-turbulence wind tunnel with Reynolds numbers from 2.4x10(5) to 1.0x10(6). In addition to free-transition measurements, potential drag reductions using artificial turbulators were explored. More recently, this model was retested in the same facility at Reynolds numbers down to 1.0x10(5). In addition, because this airfoil has been successfully employed on model aircraft and unmanned aerial vehicles, its performance using a simulated simple flap/aileron was measured and found to provide the necessary lift coefficient range to support the flight envelope without significant increases in drag. In this regard, it is comparable to similar flapped-equipped airfoils. Finally, as with the results from the original tests, with the exception of the maximum lift coefficient, theoretical predictions using well-known codes are found to be in good agreement with the wind-tunnel measurements.
引用
收藏
页码:1739 / 1745
页数:7
相关论文
共 50 条
  • [1] Aerodynamic performance analysis of NACA 0018 airfoil at low Reynolds numbers in a low-turbulence wind tunnel
    Rogowski, Krzysztof
    Mikkelsen, Robert Flemming
    Michna, Jan
    Wisniewski, Jan
    ADVANCES IN SCIENCE AND TECHNOLOGY-RESEARCH JOURNAL, 2025, 19 (02) : 136 - 150
  • [2] Low-Reynolds-number separation on an airfoil
    Lin, JCM
    Pauley, LL
    AIAA JOURNAL, 1996, 34 (08) : 1570 - 1577
  • [3] Aerodynamic hysteresis of a low-Reynolds-number airfoil
    Hu, Hui
    Yang, Zifeng
    Igarashi, Hirofumi
    JOURNAL OF AIRCRAFT, 2007, 44 (06): : 2083 - 2086
  • [4] ANALYSIS OF LOW-REYNOLDS-NUMBER AIRFOIL FLOWS
    EKATERINARIS, JA
    CHANDRASEKHARA, MS
    PLATZER, MF
    JOURNAL OF AIRCRAFT, 1995, 32 (03): : 625 - 630
  • [5] Low-turbulence wind tunnel at Tohoku University
    Ito, H.
    Kobayashi, R.
    Kohama, Y.
    Aeronautical Journal, 1992, 96 (954):
  • [6] An experimental study of the laminar flow separation on a low-Reynolds-number airfoil
    Hu, Hui
    Yang, Zifeng
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2008, 130 (05): : 0511011 - 05110111
  • [7] On the anisotropy of a low-Reynolds-number grid turbulence
    Djenidi, L.
    Tardu, S. F.
    JOURNAL OF FLUID MECHANICS, 2012, 702 : 332 - 353
  • [8] DECAY OF ISOTROPIC TURBULENCE AT LOW-REYNOLDS-NUMBER
    MANSOUR, NN
    WRAY, AA
    PHYSICS OF FLUIDS, 1994, 6 (02) : 808 - 814
  • [9] Turbulence Modeling for Low-Reynolds-Number Flows
    Catalano, P.
    Tognaccini, R.
    AIAA JOURNAL, 2010, 48 (08) : 1673 - 1685
  • [10] Dynamic analysis of aeroacoustic hysteresis of a low-Reynolds-number airfoil
    Chen, Wangqiao
    Jiang, Hanbo
    Huang, Xun
    PHYSICAL REVIEW FLUIDS, 2022, 7 (09)