Exploring Contrast Consistency of Open-Domain Question Answering Systems on Minimally Edited Questions

被引:1
|
作者
Zhang, Zhihan [1 ]
Yu, Wenhao [1 ]
Ning, Zheng [1 ]
Ju, Mingxuan [1 ]
Jiang, Meng [1 ]
机构
[1] Univ Notre Dame, Notre Dame, IN 46556 USA
关键词
Compendex;
D O I
10.1162/tacl_a_00591
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Contrast consistency, the ability of a model to make consistently correct predictions in the presence of perturbations, is an essential aspect in NLP. While studied in tasks such as sentiment analysis and reading comprehension, it remains unexplored in open-domain question answering (OpenQA) due to the difficulty of collecting perturbed questions that satisfy factuality requirements. In this work, we collect minimally edited questions as challenging contrast sets to evaluate OpenQA models. Our collection approach combines both human annotation and large language model generation. We find that the widely used dense passage retriever (DPR) performs poorly on our contrast sets, despite fitting the training set well and performing competitively on standard test sets. To address this issue, we introduce a simple and effective query-side contrastive loss with the aid of data augmentation to improve DPR training. Our experiments on the contrast sets demonstrate that DPR's contrast consistency is improved without sacrificing its accuracy on the standard test sets.(1)
引用
收藏
页码:1082 / 1096
页数:15
相关论文
共 50 条
  • [1] Advances in open-domain question answering
    Zhang, Zhi-Chang
    Zhang, Yu
    Liu, Ting
    Li, Sheng
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2009, 37 (05): : 1058 - 1069
  • [2] Advances in question classification for open-domain question answering
    School of Computer Science and Technology, Anhui University of Technology, Maanshan
    Anhui
    243002, China
    不详
    Jiangsu
    210023, China
    Tien Tzu Hsueh Pao, 8 (1627-1636):
  • [3] AMBIGQA: Answering Ambiguous Open-domain Questions
    Min, Sewon
    Michael, Julian
    Hajishirzi, Hannaneh
    Zettlemoyer, Luke
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 5783 - 5797
  • [4] Type checking in open-domain question answering
    Schlobach, S
    Olsthoorn, M
    de Rijke, M
    ECAI 2004: 16TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 110 : 398 - 402
  • [5] Detrimental Contexts in Open-Domain Question Answering
    Oh, Philhoon
    Thorne, James
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 11589 - 11605
  • [6] Ranking and Sampling in Open-Domain Question Answering
    Xu, Yanfu
    Lin, Zheng
    Liu, Yuanxin
    Liu, Rui
    Wang, Weiping
    Meng, Dan
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 2412 - 2421
  • [7] Passage filtering for open-domain Question Answering
    Noguera, Elisa
    Llopis, Fernando
    Ferrandez, Antonio
    ADVANCES IN NATURAL LANGUAGE PROCESSING, PROCEEDINGS, 2006, 4139 : 534 - 540
  • [8] Open-domain textual question answering techniques
    Harabagiu, Sanda M.
    Maiorano, Steven J.
    Paşca, Marius A.
    Natural Language Engineering, 2003, 9 (03) : 231 - 267
  • [9] A Light Ranker for Open-Domain Question Answering
    Qiu, Boyu
    Xu, Jungang
    Chen, Xu
    Sun, Yingfei
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [10] PyGaggle: A Gaggle of Resources for Open-Domain Question Answering
    Pradeep, Ronak
    Chen, Haonan
    Gu, Lingwei
    Tamber, Manveer Singh
    Lin, Jimmy
    ADVANCES IN INFORMATION RETRIEVAL, ECIR 2023, PT III, 2023, 13982 : 148 - 162