Moment estimator for an AR(1) model driven by a long memory Gaussian noise

被引:2
|
作者
Chen, Yong [1 ]
Li, Ying [2 ]
Tian, Li [1 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
关键词
Gaussian process; Asymptotic normality; Almost sure central limit theorem; Berry-Ess?en bound; Breuer-Major theorem; Fourth moment theorem; CENTRAL LIMIT-THEOREMS; ASYMPTOTIC PROPERTIES; PARAMETER-ESTIMATION; STRONG CONSISTENCY; REGRESSION-MODEL; LSE;
D O I
10.1016/j.jspi.2022.06.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider an inference problem for the first order autoregressive process driven by a given long memory stationary Gaussian noise. Suppose that the covariance function of the noise is positive and can be expressed as |k|2H-2 times a positive function slowly varying at infinity. The fractional Gaussian noise and the fractional ARIMA(0, d, 0) model with d E (0, 12 ) and some others Gaussian noise are special examples that satisfy this assumption. We propose a moment estimator and prove the strong consistency, the asymptotic normality and the almost sure central limit theorem. Moreover, we give the upper Berry-Esseen bound by means of Fourth moment theorem. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:94 / 107
页数:14
相关论文
共 50 条
  • [1] Controlled Parameter Estimation for The AR(1) Model with Stationary Gaussian Noise
    Sun, Lin
    Cai, Chunhao
    Zhang, Min
    FRACTAL AND FRACTIONAL, 2022, 6 (11)
  • [2] AN EFFICIENT ESTIMATOR FOR LOCALLY STATIONARY GAUSSIAN LONG-MEMORY PROCESSES
    Palma, Wilfredo
    Olea, Ricardo
    ANNALS OF STATISTICS, 2010, 38 (05): : 2958 - 2997
  • [3] ON THE CONSISTENCY OF THE LEAST SQUARES ESTIMATOR IN MODELS SAMPLED AT RANDOM TIMES DRIVEN BY LONG MEMORY NOISE: THE RENEWAL CASE
    Araya, Hector
    Bahamonde, Natalia
    Fermin, Lisandro
    Roa, Tania
    Torres, Soledad
    STATISTICA SINICA, 2023, 33 (01) : 1 - 26
  • [4] ON THE CONSISTENCY OF LEAST SQUARES ESTIMATOR IN MODELS SAMPLED AT RANDOM TIMES DRIVEN BY LONG MEMORY NOISE: THE JITTERED CASE
    Araya, Hector
    Bahamonde, Natalia
    Fermin, Lisandro
    Roa, Tania
    Torres, Soledad
    STATISTICA SINICA, 2023, 33 (01) : 331 - 351
  • [5] A Moment Specification Algorithm for Control of Nonlinear Systems Driven by Gaussian White Noise
    S. F. Wojtkiewicz
    L. A. Bergman
    Nonlinear Dynamics, 2001, 24 : 17 - 30
  • [6] A moment specification algorithm for control of nonlinear systems driven by Gaussian white noise
    Wojtkiewicz, SF
    Bergman, LA
    NONLINEAR DYNAMICS, 2001, 24 (01) : 17 - 30
  • [7] An Improved Estimator for a Gaussian AR(1) Process with an Unknown Drift and Additive Outliers
    Panichkitkosolkul, Wararit
    THAILAND STATISTICIAN, 2010, 8 (01): : 1 - 15
  • [8] New Estimator for an Unknown Mean Gaussian AR(1) Process with Additive Outliers
    Panichkitkosolkul, Wararit
    CHIANG MAI JOURNAL OF SCIENCE, 2010, 37 (01): : 14 - 20
  • [9] A Suggested Estimator for AR(1) Model with Missing Observations
    Enany, Mohamed Abdelsamie
    Issa, Mohamed Khalifa Ahmed
    Gad, Ahmed Abdelfatah
    THAILAND STATISTICIAN, 2023, 21 (03): : 607 - 615
  • [10] Moment Bounds for a Generalized Anderson Model with Gaussian Noise Rough in Space
    Liu, Junfeng
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (01) : 167 - 200