Combining GEDI and sentinel data to estimate forest canopy mean height and aboveground biomass

被引:22
|
作者
Guo, Qiyu [1 ]
Du, Shouhang [1 ]
Jiang, Jinbao [1 ]
Guo, Wei [1 ]
Zhao, Hengqian [1 ]
Yan, Xuzhe [1 ]
Zhao, Yinpeng [1 ]
Xiao, Wanshan [2 ]
机构
[1] China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
[2] China Bldg Mat Ind Geol Explorat Ctr, Liaoning Branch, Shenyang 110004, Peoples R China
基金
中国国家自然科学基金;
关键词
Forest aboveground biomass; Forest canopy mean height; GEDI; Sentinel data; Feature filtering; LIDAR DATA; VEGETATION; TRANSFERABILITY; PERFORMANCE; MODELS; INDEX;
D O I
10.1016/j.ecoinf.2023.102348
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Forest canopy mean height (CMH) and aboveground biomass (AGB) are key indicators for evaluating forest ecosystem productivity. In this study, we proposed a new approach to integrate field measurement data, GEDI LiDAR, sentinel, and terrain data to construct multi-source data-driven forest CMH and AGB models at a 30-m resolution. First, we employed the RFE-SVM (Recursive Feature Elimination- Support Vector Machine) method to determine the features sensitive to forest height and AGB. Second, we used three regression models to construct the CMH model to extend the GEDI point data to wall-to-wall CMH maps thereby providing sensitive features for AGB estimation. Third, we jointly selected the features and field measurement data to build a model to estimate AGB. The CMH and AGB models, evaluated within the study area, achieved R2 values of 0.64 and 0.89, respectively. Fourth, we performed transferability tests for the AGB model. The AGB model built based on data from study area was applied to three other test areas, resulting in R2 values of 0.66, 0.76, and 0.91, respectively. Overall, this study presented a method that utilizes extensive open data with great potential for mapping forest CMH and AGB over large areas.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground Biomass Estimates in Mediterranean Forests
    Dorado-Roda, Ivan
    Pascual, Adrian
    Godinho, Sergio
    Silva, Carlos A.
    Botequim, Brigite
    Rodriguez-Gonzalvez, Pablo
    Gonzalez-Ferreiro, Eduardo
    Guerra-Hernandez, Juan
    REMOTE SENSING, 2021, 13 (12)
  • [2] Forest Height and Aboveground Biomass Mapping by synergistic use of GEDI and Sentinel Data using Random Forest Algorithm in the Indian Himalayan Region
    Bhandari, Konica
    Srinet, Ritika
    Nandy, Subrata
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2024, 52 (04) : 857 - 869
  • [3] Forest Height and Aboveground Biomass Mapping by synergistic use of GEDI and Sentinel Data using Random Forest Algorithm in the Indian Himalayan Region
    Konica Bhandari
    Ritika Srinet
    Subrata Nandy
    Journal of the Indian Society of Remote Sensing, 2024, 52 : 857 - 869
  • [4] State-wide forest canopy height and aboveground biomass map for New York with 10 m resolution, integrating GEDI, Sentinel-1, and Sentinel-2 data
    Tamiminia, Haifa
    Salehi, Bahram
    Mahdianpari, Masoud
    Goulden, Tristan
    ECOLOGICAL INFORMATICS, 2024, 79
  • [5] Forest aboveground biomass estimation combining ICESat-2 and GEDI spaceborne LiDAR data
    Meng G.
    Zhao D.
    Xu C.
    Chen J.
    Li X.
    Zheng Z.
    Zeng Y.
    National Remote Sensing Bulletin, 2024, 28 (06) : 1632 - 1647
  • [6] Spatially Continuous Mapping of Forest Canopy Height in Canada by Combining GEDI and ICESat-2 with PALSAR and Sentinel
    Sothe, Camile
    Gonsamo, Alemu
    Lourenco, Ricardo B.
    Kurz, Werner A.
    Snider, James
    REMOTE SENSING, 2022, 14 (20)
  • [7] Estimates of forest canopy height and aboveground biomass using ICESat
    Lefsky, MA
    Harding, DJ
    Keller, M
    Cohen, WB
    Carabajal, CC
    Espirito-Santo, FD
    Hunter, MO
    de Oliveira, R
    GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (22) : 1 - 4
  • [8] Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass
    Joetzjer, E.
    Pillet, M.
    Ciais, P.
    Barbier, N.
    Chave, J.
    Schlund, M.
    Maignan, F.
    Barichivich, J.
    Luyssaert, S.
    Herault, B.
    von Poncet, F.
    Poulter, B.
    GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (13) : 6823 - 6832
  • [9] Correcting forest aboveground biomass biases by incorporating independent canopy height retrieval with conventional machine learning models using GEDI and ICESat-2 data
    Zhang, Biao
    Wang, Zhichao
    Ma, Tiantian
    Wang, Zhihao
    Li, Hao
    Ji, Wenxu
    He, Mingyang
    Jiao, Ao
    Feng, Zhongke
    ECOLOGICAL INFORMATICS, 2025, 86
  • [10] Mapping global forest canopy height through integration of GEDI and Landsat data
    Potapov, Peter
    Li, Xinyuan
    Hernandez-Serna, Andres
    Tyukavina, Alexandra
    Hansen, Matthew C.
    Kommareddy, Anil
    Pickens, Amy
    Turubanova, Svetlana
    Tang, Hao
    Silva, Carlos Edibaldo
    Armston, John
    Dubayah, Ralph
    Blair, J. Bryan
    Hofton, Michelle
    REMOTE SENSING OF ENVIRONMENT, 2021, 253