Optimal sample size for estimating the mean concentration of invasive organisms in ballast water via a semiparametric Bayesian analysis

被引:0
|
作者
Costa, Eliardo G. [1 ]
Paulino, Carlos Daniel [2 ,3 ]
Singer, Julio M. [4 ]
机构
[1] Univ Fed Rio Grande do Norte, Dept Estat, Natal, RN, Brazil
[2] Univ Lisbon, Dept Matemat, IST, Lisbon, Portugal
[3] Univ Lisbon, CEAUL, FCUL, Lisbon, Portugal
[4] Univ Sao Paulo, Dept Estat, Sao Paulo, Brazil
来源
STATISTICAL METHODS AND APPLICATIONS | 2023年 / 32卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
Bayes risk; Credible intervals; Dirichlet process mixture; Poisson distribution; DISTRIBUTIONS; FUNCTIONALS; PARAMETER;
D O I
10.1007/s10260-022-00639-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the determination of optimal sample sizes to estimate the concentration of organisms in ballast water via a semiparametric Bayesian approach involving a Dirichlet process mixture based on a Poisson model. This semiparametric model provides greater flexibility to model the organism distribution than that allowed by competing parametric models and is robust against misspecification. To obtain the optimal sample size we use a total cost minimization criterion, based on the sum of a Bayes risk and a sampling cost function. Credible intervals obtained via the proposed model may be used to verify compliance of the water with international standards before deballasting.
引用
收藏
页码:57 / 74
页数:18
相关论文
共 9 条
  • [1] Optimal sample size for estimating the mean concentration of invasive organisms in ballast water via a semiparametric Bayesian analysis
    Eliardo G. Costa
    Carlos Daniel Paulino
    Julio M. Singer
    Statistical Methods & Applications, 2023, 32 : 57 - 74
  • [2] Sample size for estimating the mean concentration of organisms in ballast water
    Costa, Eliardo G.
    Lopes, Rubens M.
    Singer, Julio M.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2016, 180 : 433 - 438
  • [3] Sample size for estimating organism concentration in ballast water: A Bayesian approach
    Costa, Eliardo G.
    Paulino, Carlos Daniel
    Singer, Julio M.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2021, 35 (01) : 158 - 171
  • [4] Optimal approaches for inline sampling of organisms in ballast water: L-shaped vs. Straight sample probes
    Wier, Timothy P.
    Moser, Cameron S.
    Grant, Jonathan F.
    Riley, Scott C.
    Robbins-Wamsley, Stephanie H.
    First, Matthew R.
    Drake, Lisa A.
    JOURNAL OF SEA RESEARCH, 2017, 128 : 25 - 31
  • [5] Estimating the sample mean and standard deviation from order statistics and sample size in meta-analysis
    Cai, Siyu
    Zhou, Jie
    Pan, Jianxin
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (12) : 2701 - 2719
  • [6] Estimating size and scope economies in the Portuguese water sector using the Bayesian stochastic frontier analysis
    Carvalho, Pedro
    Marques, Rui Cunha
    SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 544 : 574 - 586
  • [7] Predicting glucose concentration for hyper/hypoglycemia alert: multiple order model migration and optimal model selection via analysis of sample size
    Zhao, Chunhui
    Wang, Wei
    Yu, Chengxia
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 1468 - 1473
  • [8] Estimating the Unseen: An n/log(n)-sample Estimator for Entropy and Support Size, Shown Optimal via New CLTs
    Valiant, Gregory
    Valiant, Paul
    STOC 11: PROCEEDINGS OF THE 43RD ACM SYMPOSIUM ON THEORY OF COMPUTING, 2011, : 685 - 694
  • [9] Assessing the performance of four indicative analysis devices for ballast water compliance monitoring, considering organisms in the size range ≥10 to <50 μm
    Casas-Monroy, Oscar
    Kydd, Jocelyn
    Rozon, Robin M.
    Bailey, Sarah A.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 317