Lie Symmetry Analysis of the Aw-Rascle-Zhang Model for Traffic State Estimation

被引:3
|
作者
Paliathanasis, Andronikos [1 ,2 ]
Leach, Peter G. L. [1 ]
机构
[1] Durban Univ Technol, PO, Box 1334, 1Institute Syst Sci, 1334, ZA-4000 Durban, South Africa
[2] Univ Catolica Norte, 2Departamento Matemat, Avda Angamos 0610, Casilla, Antofagasta 1240000, Chile
关键词
Lie symmetries; invariant functions; traffic estimation; GROUP CLASSIFICATION; CONSERVATION-LAWS; KINEMATIC WAVES; ROAD NETWORK; FLOW; EQUATIONS;
D O I
10.3390/math11010081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend our analysis on the Lie symmetries in fluid dynamics to the case of macroscopic traffic estimation models. In particular we study the Aw-Rascle-Zhang model for traffic estimation, which consists of two hyperbolic first-order partial differential equations. The Lie symmetries, the one-dimensional optimal system and the corresponding Lie invariants are determined. Specifically, we find that the admitted Lie symmetries form the four-dimensional Lie algebra A(4,12). The resulting one-dimensional optimal system is consisted by seven one-dimensional Lie algebras. Finally, we apply the Lie symmetries in order to define similarity transformations and derive new analytic solutions for the traffic model. The qualitative behaviour of the solutions is discussed.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Traffic congestion control for Aw-Rascle-Zhang model
    Yu, Huan
    Krstic, Miroslav
    AUTOMATICA, 2019, 100 : 38 - 51
  • [2] Boundary Observer for Congested Freeway Traffic State Estimation via Aw-Rascle-Zhang model
    Yu, Huan
    Bayen, Alexandre M.
    Krstic, Miroslav
    IFAC PAPERSONLINE, 2019, 52 (02): : 183 - 188
  • [3] Traffic State Estimation Method with Efficient Data Fusion Based on the Aw-Rascle-Zhang Model
    Seo, Toru
    Bayen, Alexandre M.
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,
  • [4] The hysteretic Aw-Rascle-Zhang model
    Corli, Andrea
    Fan, Haitao
    STUDIES IN APPLIED MATHEMATICS, 2024, 153 (04)
  • [5] Traffic Congestion Control on Aw-Rascle-Zhang Model: Full-State Feedback
    Yu, Huan
    Krstic, Miroslav
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 943 - 948
  • [6] MOVING BOTTLENECKS FOR THE AW-RASCLE-ZHANG TRAFFIC FLOW MODEL
    Villa, Stefano
    Goatin, Paola
    Chalons, Christophe
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (10): : 3921 - 3952
  • [7] Traffic State Estimation for Connected Vehicles Using the Second-Order Aw-Rascle-Zhang Traffic Model
    Vishnoi, Suyash C.
    Nugroho, Sebastian A.
    Taha, Ahmad F.
    Claudel, Christian G.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) : 16719 - 16733
  • [8] Prediction of traffic convective instability with spectral analysis of the Aw-Rascle-Zhang model
    Belletti, Francois
    Huo, Mandy
    Litrico, Xavier
    Bayen, Alexandre M.
    PHYSICS LETTERS A, 2015, 379 (38) : 2319 - 2330
  • [9] Varying Speed Limit Control of Aw-Rascle-Zhang Traffic Model
    Yu, Huan
    Krstic, Miroslav
    2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 1846 - 1851
  • [10] The zero relaxation limit for the Aw-Rascle-Zhang traffic flow model
    Goatin, Paola
    Laurent-Brouty, Nicolas
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (01):