Isomorphism between the Bialynicki-Birula and the Landau-Peierls Fock space quantization of the electromagnetic field in position representation

被引:2
|
作者
Federico, M. [1 ]
Jauslin, H. R. [1 ]
机构
[1] Univ Bourgogne Franche Comte, Lab Interdisciplinaire Carnot Bourgogne, UMR 6303, CNRS, BP47870, F-21078 Dijon, France
基金
欧盟地平线“2020”;
关键词
Fock space quantization; electromagnetic field; photon states; photon wave function; negative energy states; helicity operator; frequency operator; SINGLE PHOTONS; LOCALIZATION; GENERATION;
D O I
10.1088/1751-8121/acd155
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We first present a summary of the quantization of the electromagnetic field in position space representation, using two main approaches: the Landau-Peierls approach in the Coulomb gauge and the Bialynicki-Birula (BB) approach, based on the Riemann-Silberstein vector. We describe both in a framework that starts with a classical Hamiltonian structure and builds the quantum model in a bosonic Fock space by a precisely defined principle of correspondence. We show that the two approaches are completely equivalent. This is formulated by showing that there is a unitary map between the Fock spaces that makes them isomorphic. Since all the physically measurable quantities can be expressed in terms of scalar products, this implies that the two quantizations lead to exactly the same physical properties. We show furthemore that the isomorphism is preserved in the time evolutions. To show the equivalence, we use the concepts of helicity and frequency operators. The combination of these two operators provides a formulation that allows one to make the link between these two methods of quantization in a precise way. We also show that the construction in the BB quantization that avoids the presence of negative eigenvalues in the Hamiltonian, in analogy with the one for the Dirac equation for electrons and positrons, can be performed through an alternative choice of the canonical variables for Maxwell's equations.
引用
收藏
页数:22
相关论文
empty
未找到相关数据