Solving multi-objective inverse problems of chained manufacturing processes

被引:3
|
作者
Hoffer, J. G. [1 ]
Geiger, B. C. [2 ]
Kern, R. [3 ]
机构
[1] Bohler Aerosp GmbH & Co KG, Mariazellerstr 25, Kapfenberg, Austria
[2] Know Ctr GmbH, Inffeldgasse 13, Graz, Austria
[3] Graz Univ Technol, Inst Interact Syst & Data Sci, Inffeldgasse 16c, A-8010 Graz, Austria
关键词
Bayesian optimization; Gaussian process regression; Manufacturing; Multi-objective optimization; Process optimization; GAUSSIAN-PROCESSES; OPTIMIZATION; MODEL; PREDICTION;
D O I
10.1016/j.cirpj.2022.11.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This research presents an approach that combines stacked Gaussian processes (stacked GP) with target vector Bayesian optimization (BO) to solve multi-objective inverse problems of chained manufacturing processes. In this context, GP surrogate models represent individual manufacturing processes and are stacked to build a unified surrogate model that represents the entire manufacturing process chain. Using stacked GPs, epistemic uncertainty can be propagated through all chained manufacturing processes. To perform target vector BO, acquisition functions make use of a noncentral chi-squared distribution of the squared Euclidean distance between a given target vector and surrogate model output. In BO of chained processes, there are the options to use a single unified surrogate model that represents the entire joint chain, or that there is a surrogate model for each individual process and the optimization is cascaded from the last to the first process. Literature suggests that a joint optimization approach using stacked GPs overestimates uncertainty, whereas a cascaded approach underestimates it. For improved target vector BO results of chained processes, we present an approach that combines methods which under-or overestimate uncertainties in an ensemble for rank aggregation. We present a thorough analysis of the proposed methods and evaluate on two artificial use cases and on a typical manufacturing process chain: preforming and final pressing of an Inconel 625 superalloy billet. (c) 2022 CIRP.
引用
收藏
页码:213 / 231
页数:19
相关论文
共 50 条
  • [1] Multi-objective genetic algorithm for solving multi-objective flow-shop inverse scheduling problems
    Mou J.
    Guo Q.
    Gao L.
    Zhang W.
    Mou J.
    Mou, Jianhui (mjhcr@163.com), 1600, Chinese Mechanical Engineering Society (52): : 186 - 197
  • [2] An Improved Multi-Objective Genetic Algorithm for Solving Multi-objective Problems
    Hsieh, Sheng-Ta
    Chiu, Shih-Yuan
    Yen, Shi-Jim
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (05): : 1933 - 1941
  • [3] Multi-objective Jaya Algorithm for Solving Constrained Multi-objective Optimization Problems
    Naidu, Y. Ramu
    Ojha, A. K.
    Devi, V. Susheela
    ADVANCES IN HARMONY SEARCH, SOFT COMPUTING AND APPLICATIONS, 2020, 1063 : 89 - 98
  • [4] Multi-objective Phylogenetic Algorithm: Solving Multi-objective Decomposable Deceptive Problems
    Martins, Jean Paulo
    Mineiro Soares, Antonio Helson
    Vargas, Danilo Vasconcellos
    Botazzo Delbem, Alexandre Claudio
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2011, 6576 : 285 - 297
  • [5] MOMPA: Multi-objective marine predator algorithm for solving multi-objective optimization problems
    Jangir, Pradeep
    Buch, Hitarth
    Mirjalili, Seyedali
    Manoharan, Premkumar
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (01) : 169 - 195
  • [6] A new multi-objective evolutionary algorithm for solving high complex multi-objective problems
    Li, Kangshun
    Yue, Xuezhi
    Kang, Lishan
    Chen, Zhangxin
    GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2006, : 745 - +
  • [7] A Multi-Objective Carnivorous Plant Algorithm for Solving Constrained Multi-Objective Optimization Problems
    Yang, Yufei
    Zhang, Changsheng
    BIOMIMETICS, 2023, 8 (02)
  • [8] Multi-objective equilibrium optimizer: framework and development for solving multi-objective optimization problems
    Premkumar, M.
    Jangir, Pradeep
    Sowmya, R.
    Alhelou, Hassan Haes
    Mirjalili, Seyedali
    Kumar, B. Santhosh
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2022, 9 (01) : 24 - 50
  • [9] MOMPA: Multi-objective marine predator algorithm for solving multi-objective optimization problems
    Pradeep Jangir
    Hitarth Buch
    Seyedali Mirjalili
    Premkumar Manoharan
    Evolutionary Intelligence, 2023, 16 : 169 - 195
  • [10] A novel ε-dominance multi-objective evolutionary algorithms for solving DRS multi-objective optimization problems
    Liu, Liu
    Li, Minqiang
    Lin, Dan
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 4, PROCEEDINGS, 2007, : 96 - +