Upper Bound for the Coefficients of the Shortest Vector of Random Lattice

被引:0
|
作者
Kaminaga, Masahiro [1 ]
机构
[1] Tohoku Gakuin Univ, Dept Informat Technol Engn, Sendai Shi 9858537, Japan
基金
日本学术振兴会;
关键词
lattice; shortest vector problem; REDUCTION;
D O I
10.1587/transfun.2023EAL2032
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper shows that upper bounds on the coefficients of the shortest vector of a lattice can be represented using the smallest eigenvalue of the Gram matrix for the lattice, obtains its distribution for high dimensional random Goldstein-Mayer lattice, and applies it to determine the percentage of zeros of coefficient vector.
引用
收藏
页码:1585 / 1588
页数:4
相关论文
共 50 条
  • [1] Upper Bound of The Shortest Vector Coefficients and Its Applications
    Naganuma, Ken
    Yoshino, Masayuki
    Sato, Hisayoshi
    2012 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA 2012), 2012, : 426 - 430
  • [2] A RIGOROUS UPPER BOUND IN ELECTROSTATICS ON A RANDOM LATTICE ENSEMBLE
    FRIEDBERG, R
    YANCOPOULOS, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 89 (01) : 131 - 143
  • [3] A note on the shortest lattice vector problem
    Kumar, R
    Sivakumar, D
    FOURTEENTH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 1999, : 200 - 204
  • [4] On the unique shortest lattice vector problem
    Kumar, SR
    Sivakumar, D
    THEORETICAL COMPUTER SCIENCE, 2001, 255 (1-2) : 641 - 648
  • [5] On polynomial approximations to the shortest lattice vector length
    Kumar, R
    Sivakumar, D
    PROCEEDINGS OF THE TWELFTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2001, : 126 - 127
  • [6] Improving the Upper Bound on the Length of the Shortest Reset Words
    Szykula, Marek
    35TH SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2018), 2018, 96
  • [7] Parallel Shortest Lattice Vector Enumeration on Graphics Cards
    Hermans, Jens
    Schneider, Michael
    Buchmann, Johannes
    Vercauteren, Frederik
    Preneel, Bart
    PROGRESS IN CRYPTOLOGY - AFRICACRYPT 2010, 2010, 6055 : 52 - +
  • [8] The Analysis of the Extended Search Space for the Shortest Vector in Lattice
    Fukase, Masaharu
    Yamaguchi, Kazunori
    IMETI 2010: 3RD INTERNATIONAL MULTI-CONFERENCE ON ENGINEERING AND TECHNOLOGICAL INNOVATION, VOL II (POST-CONFERENCE EDITION), 2010, : 209 - 213
  • [9] An overview of the sieve algorithm for the shortest lattice vector problem
    Ajtai, M
    Kumar, R
    Sivakumar, D
    CRYPTOGRAPHY AND LATTICES, 2001, 2146 : 1 - 3
  • [10] An improved upper bound for ultraspherical coefficients
    Hamzehnejad, Mehdi
    Hosseini, Mohammad Mehdi
    Salemi, Abbas
    JOURNAL OF MATHEMATICAL MODELING, 2022, 10 (03): : 421 - 431