A transformer-based approach for early prediction of soybean yield using time-series images

被引:6
|
作者
Bi, Luning [1 ]
Wally, Owen [2 ]
Hu, Guiping [1 ]
Tenuta, Albert U. [3 ]
Kandel, Yuba R. [4 ]
Mueller, Daren S. [4 ]
机构
[1] Iowa State Univ, Dept Ind & Mfg Syst Engn, Ames, IA 50011 USA
[2] Harrow Res & Dev Ctr, Agr & Agrifood Canada, Harrow, ON, Canada
[3] Ontario Minist Agr Food & Rural Affairs, Ridgetown, ON, Canada
[4] Iowa State Univ, Dept Plant Pathol & Microbiol, Ames, IA USA
来源
关键词
transformer; image recognition; time-series prediction; soybean yield prediction; deep learning;
D O I
10.3389/fpls.2023.1173036
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Crop yield prediction which provides critical information for management decision-making is of significant importance in precision agriculture. Traditional manual inspection and calculation are often laborious and time-consuming. For yield prediction using high-resolution images, existing methods, e.g., convolutional neural network, are challenging to model long range multi-level dependencies across image regions. This paper proposes a transformer-based approach for yield prediction using early-stage images and seed information. First, each original image is segmented into plant and soil categories. Two vision transformer (ViT) modules are designed to extract features from each category. Then a transformer module is established to deal with the time-series features. Finally, the image features and seed features are combined to estimate the yield. A case study has been conducted using a dataset that was collected during the 2020 soybean-growing seasons in Canadian fields. Compared with other baseline models, the proposed method can reduce the prediction error by more than 40%. The impact of seed information on predictions is studied both between models and within a single model. The results show that the influence of seed information varies among different plots but it is particularly important for the prediction of low yields.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] TIformer: A Transformer-Based Framework for Time-Series Forecasting with Missing Data
    Ding, Zuocheng
    Chen, Yufan
    Wang, Hanchen
    Wang, Xiaoyang
    Zhang, Wenjie
    Zhang, Ying
    DATABASES THEORY AND APPLICATIONS, ADC 2024, 2025, 15449 : 71 - 84
  • [2] TTS-GAN: A Transformer-Based Time-Series Generative Adversarial Network
    Li, Xiaomin
    Metsis, Vangelis
    Wang, Huangyingrui
    Ngu, Anne Hee Hiong
    ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2022, 2022, 13263 : 133 - 143
  • [3] A Transformer-Based Model for Time Series Prediction of Remote Sensing Data
    Niu, Xintian
    Liu, Yige Ng
    Ma, Ming
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT II, ICIC 2024, 2024, 14876 : 188 - 200
  • [4] Variational transformer-based anomaly detection approach for multivariate time series
    Wang, Xixuan
    Pi, Dechang
    Zhang, Xiangyan
    Liu, Hao
    Guo, Chang
    MEASUREMENT, 2022, 191
  • [5] Molecular Descriptors Property Prediction Using Transformer-Based Approach
    Tran, Tuan
    Ekenna, Chinwe
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (15)
  • [6] RSMformer: an efficient multiscale transformer-based framework for long sequence time-series forecasting
    Tong, Guoxiang
    Ge, Zhaoyuan
    Peng, Dunlu
    APPLIED INTELLIGENCE, 2024, 54 (02) : 1275 - 1296
  • [7] RSMformer: an efficient multiscale transformer-based framework for long sequence time-series forecasting
    Guoxiang Tong
    Zhaoyuan Ge
    Dunlu Peng
    Applied Intelligence, 2024, 54 (2) : 1275 - 1296
  • [8] A Transformer-Based Industrial Time Series Prediction Model With Multivariate Dynamic Embedding
    Wang, Chenze
    Wang, Han
    Zhang, Xiaohan
    Liu, Qing
    Liu, Min
    Xu, Gaowei
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (02) : 1813 - 1822
  • [9] Time-Aware Transformer-based Network for Clinical Notes Series Prediction
    Zhang, Dongyu
    Thadajarassiri, Jidapa
    Sen, Cansu
    Rundensteiner, Elke
    MACHINE LEARNING FOR HEALTHCARE CONFERENCE, VOL 126, 2020, 126 : 566 - 587
  • [10] TXtreme: transformer-based extreme value prediction framework for time series forecasting
    Yadav, Hemant
    Thakkar, Amit
    DISCOVER APPLIED SCIENCES, 2025, 7 (02)