COMPOSITIONS OF COSPECTRALITY GRAPHS OF SMITH GRAPHS

被引:0
|
作者
Cvetkovic, Dragos M. [1 ]
Jerotijevic, Marija [2 ]
机构
[1] Math Inst SANU, Kneza Mihaila 36, Belgrade, Serbia
[2] Union Univ, Sch Comp, Kneza Mihaila 6-6, Belgrade, Serbia
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2023年 / 47卷 / 02期
关键词
Spectral graph theory; Smith graphs; cospectrality graphs;
D O I
10.46793/KgJMat2302.271C
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Graphs whose spectrum belongs to the interval [-2, 2] are called Smith graphs. Vertices of the cospectrality graph C(H) of a Smith graph H are all graphs cospectral with H with two vertices adjacent if there exists a certain transformation transforming one to another. We study how the cospectrality graph of the union of two Smith graphs can be composed starting from cospectrality graphs of starting graphs.
引用
收藏
页码:271 / 279
页数:9
相关论文
共 50 条
  • [1] Cospectrality Graphs of Smith Graphs
    Cvetkovic, Dragos M.
    Todorcevic, Vesna P.
    FILOMAT, 2019, 33 (11) : 3269 - 3276
  • [2] Cospectrality of graphs
    Abdollahi, Alireza
    Oboudi, Mohammad Reza
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 451 : 169 - 181
  • [3] Cospectrality of multipartite graphs
    Abdollahi, Alireza
    Zakeri, Niloufar
    ARS MATHEMATICA CONTEMPORANEA, 2022, 22 (01)
  • [4] On cospectrality of gain graphs
    Cavaleri, Matteo
    Donno, Alfredo
    SPECIAL MATRICES, 2022, 10 (01): : 343 - 365
  • [5] On the Distance Cospectrality of Threshold Graphs
    Lou, Zhenzhen
    Wang, Jianfeng
    Huang, Qiongxiang
    CSIAM TRANSACTIONS ON APPLIED MATHEMATICS, 2022, 3 (02): : 335 - 350
  • [6] Cospectrality of complete bipartite graphs
    Oboudi, Mohammad Reza
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (12): : 2491 - 2497
  • [7] Cospectrality of graphs with respect to distance matrices
    Aouchiche, Mustapha
    Hansen, Pierre
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 325 : 309 - 321
  • [8] STRONG COSPECTRALITY AND TWIN VERTICES IN WEIGHTED GRAPHS
    Monterde, Hermie
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 494 - 518
  • [9] Coined quantum walks lift the cospectrality of graphs and trees
    Emms, David
    Severini, Simone
    Wilson, Richard C.
    Hancock, Edwin R.
    PATTERN RECOGNITION, 2009, 42 (09) : 1988 - 2002
  • [10] Coined quantum walks lift the cospectrality of graphs and trees
    Emms, D
    Severini, S
    Wilson, RC
    Hancock, ER
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 2005, 3757 : 332 - 345