A Deep Learning Data Fusion Model Using Sentinel-1/2, SoilGrids, SMAP, and GLDAS for Soil Moisture Retrieval

被引:13
|
作者
Batchu, Vishal [1 ]
Nearing, Grey [2 ]
Gulshan, Varun [1 ]
机构
[1] Google Res, Bangalore, India
[2] Google Res, Mountain View, CA USA
关键词
Deep learning; Soil moisture; Remote sensing; Machine learning; Satellite observations; Hydrology; COARSE RESOLUTION SATELLITE; SURFACE-ROUGHNESS; SMOS; NETWORK; WATER; VALIDATION; PRODUCTS; IRRIGATION; MISSION; IMAGES;
D O I
10.1175/JHM-D-22-0118.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We develop a deep learning-based convolutional-regression model that estimates the volumetric soil mois-ture content in the top -5 cm of soil. Input predictors include Sentinel-1 (active radar) and Sentinel-2 (multispectral imag-ery), as well as geophysical variables from SoilGrids and modeled soil moisture fields from SMAP and GLDAS. The model was trained and evaluated on data from -1000 in situ sensors globally over the period 2015-21 and obtained an average per-sensor correlation of 0.707 and ubRMSE of 0.055 m3 m23, and it can be used to produce a soil moisture map at a nominal 320-m resolution. These results are benchmarked against 14 other soil moisture evaluation research works at different locations, and an ablation study was used to identify important predictors.
引用
收藏
页码:1789 / 1823
页数:35
相关论文
共 50 条
  • [1] AN IMPROVED CHANGE DETECTION METHOD FOR SOIL MOISTURE RETRIEVAL USING SENTINEL-1 AND SMAP DATA
    Jiang, Linghai
    Chen, Yan
    Chen, Yunping
    Lu, Youchun
    Du, Min
    Li, Baihui
    Huang, Xuan
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4466 - 4469
  • [2] SOIL MOISTURE RETRIEVAL USING SENTINEL-1 DATA BASED ON RESNEXT
    Li, Tianyang
    Zhang, Hong
    Wang, Chao
    Xu, Lu
    Wu, Fan
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3194 - 3197
  • [3] SMOSAR ALGORITHM FOR SOIL MOISTURE RETRIEVAL USING SENTINEL-1 DATA
    Balenzano, Anna
    Mattia, Francesco
    Satalino, Giuseppe
    Pauwels, Valentijn
    Snoeij, Paul
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1200 - 1203
  • [4] Soil Moisture Retrieval From Sentinel-1 and Sentinel-2 Data Using Ensemble Learning Over Vegetated Fields
    Wang, Liguo
    Gao, Ya
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 1802 - 1814
  • [5] Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates
    Lievens, H.
    Reichle, R. H.
    Liu, Q.
    De Lannoy, G. J. M.
    Dunbar, R. S.
    Kim, S. B.
    Das, N. N.
    Cosh, M.
    Walker, J. P.
    Wagner, W.
    GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (12) : 6145 - 6153
  • [6] Global Evaluation of SMAP/Sentinel-1 Soil Moisture Products
    Mohseni, Farzane
    Mirmazloumi, S. Mohammad
    Mokhtarzade, Mehdi
    Jamali, Sadegh
    Homayouni, Saeid
    REMOTE SENSING, 2022, 14 (18)
  • [7] On the synergy of SMAP, AMSR2 AND SENTINEL-1 for retrieving soil moisture
    Santi, E.
    Paloscia, S.
    Pettinato, S.
    Brocca, L.
    Ciabatta, L.
    Entekhabi, D.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 65 : 114 - 123
  • [8] An Approach for Downscaling SMAP Soil Moisture by Combining Sentinel-1 SAR and MODIS Data
    Bai, Jueying
    Cui, Qian
    Zhang, Wen
    Meng, Lingkui
    REMOTE SENSING, 2019, 11 (23)
  • [9] USING SENTINEL-1 DATA FOR MONITORING OF SOIL MOISTURE
    Garkusha, Igor N.
    Hnatushenko, Volodymyr V.
    Vasyliev, Volodymyr V.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1656 - 1659
  • [10] Soil moisture retrieval using CYGNSS/SMAP data fusion semi-empirical model
    Zhang Y.
    Zhang D.
    Meng W.
    Gu J.
    Han Y.
    Yang S.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (11): : 2873 - 2882