Multiparameter warning of lithium-ion battery overcharge-thermal runaway

被引:11
|
作者
Wang, Jianfeng [1 ,2 ]
Chen, Bowei [1 ]
Li, Yuhan [1 ]
Hu, Ting [1 ]
Liu, Fen [3 ]
Shi, Mengyu [1 ]
Ren, Xutong [1 ]
Jia, Yongkai [1 ]
Li, Weihua [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Automot Engn, Weihai 264209, Peoples R China
[2] Yangtze River Delta HIT Robot Technol Res Inst, Wuhu 241000, Peoples R China
[3] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Battery safety; Overcharge-thermal runaway; Pressure-type warning; Multiparameter warning strategy; FAILURE-MECHANISM; ELECTRIC VEHICLES; TEMPERATURE; PREDICTION; FIRE;
D O I
10.1016/j.est.2023.110088
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The rapid development of new energy vehicles has drawn widespread attention to battery safety. Overcharging, as an important source of thermal runaway, may occur instantaneously without obvious signs, and any corresponding fire will be difficult to extinguish. This study is an investigation of overcharging thermal runaway and thermal runaway warnings for lithium-ion batteries. A stress-type early warning system is proposed, which has faster response time and more distinctive characteristics compared with other parameters. Through the association rule mining method, a multi-parameter coupled thermal runaway early warning strategy based on voltage, temperature, and pressure parameters was designed. A hierarchical early warning model including feature extraction, data processing and early warning evaluation modules was established. On this basis, a remaining time prediction module was added to achieve an alarm escape time of up to 474 s and shortest of 65 s, meeting safety standards. In the thermal runaway experiment at 705.2 degrees C, the early warning level system was triggered respectively. The maximum battery temperatures were 28.4 degrees C, 41.5 degrees Cand 60.3 degrees C. The escape time errors were 16.56 s, 11.52 s, and 11.88 s respectively, all within 20 s for each level. Corresponding to different experimental results, the significant level classification simultaneously verifies the accuracy and effectiveness of the classification strategy.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Multiparameter Comprehensive Thermal Runaway Warning Model of Lithium-Ion Battery under Overcharge Condition
    Wang, Jianfeng
    Li, Yuhan
    Liu, Fen
    Yang, Na
    Ren, Xutong
    Shi, Mengyu
    Chen, Bowei
    Jia, Yongkai
    ENERGY TECHNOLOGY, 2024, 12 (02)
  • [2] Study on thermal runaway warning method of lithium-ion battery
    Ji, Changwei
    Zhang, Zhizu
    Wang, Bing
    Zhang, Shouqin
    Liu, Yangyi
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 78
  • [3] The early warning for overcharge thermal runaway of lithium-ion batteries based on a composite parameter
    Jia, Teng
    Zhang, Ying
    Ma, Chuyuan
    Li, Siyang
    Yu, Hang
    Liu, Ganghua
    JOURNAL OF POWER SOURCES, 2023, 555
  • [4] Warning lithium-ion battery thermal runaway with 4-min relaxation voltage
    Yu, Kun
    Liu, Peng
    Xu, Bin
    Li, Jinzhong
    Wang, Xinyu
    Zhang, Heng
    Mao, Lei
    APPLIED ENERGY, 2025, 377
  • [5] Thermal Runaway Online Warning Method for Lithium-ion Battery Based on Gas Characteristics
    Yang Q.
    Ma H.
    Duan D.
    Yan J.
    Gaodianya Jishu/High Voltage Engineering, 2022, 48 (03): : 1202 - 1211
  • [6] Research on overcharge mitigations and thermal runaway risk of 18650 lithium-ion batteries
    Yan, W. H.
    Huang, W. X.
    Yang, Y.
    Wei, Z. W.
    Zhen, H. S.
    Lin, Y.
    JOURNAL OF ENERGY STORAGE, 2025, 120
  • [7] Early Warning Method and Fire Extinguishing Technology of Lithium-Ion Battery Thermal Runaway: A Review
    Wang, Kuo
    Ouyang, Dongxu
    Qian, Xinming
    Yuan, Shuai
    Chang, Chongye
    Zhang, Jianqi
    Liu, Yifan
    ENERGIES, 2023, 16 (07)
  • [8] Reliable and Early Warning of Lithium-Ion Battery Thermal Runaway Based on Electrochemical Impedance Spectrum
    Dong, Peng
    Liu, Zhongxiao
    Wu, Peng
    Li, Zhe
    Wang, Zhenpo
    Zhang, Jianbo
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (09)
  • [9] A review on thermal runaway warning technology for lithium-ion batteries
    Hu, Dunan
    Huang, Sheng
    Wen, Zhen
    Gu, Xiuquan
    Lu, Jianguo
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 206
  • [10] A novel thermal runaway warning method of lithium-ion batteries
    Xiong, Rui
    Wang, Chenxu
    Sun, Fengchun
    iEnergy, 2023, 2 (03): : 165 - 171