A Data-Driven Model for Range Sensors

被引:0
|
作者
Spiess, Florian [1 ]
Strobel, Norbert [2 ]
Kaupp, Tobias [3 ]
Kounev, Samuel [4 ]
机构
[1] Univ Appl Sci Wuerzburg Schweinfurt, Fac Elect Engn, D-9742 Schweinfurt, Germany
[2] Univ Appl Sci Wuerzburg Schweinfurt, Inst Med Engn, D-97422 Schweinfurt, Germany
[3] Univ Appl Sci Wuerzburg Schweinfurt, Inst Digital Engn IDEE, D-97422 Schweinfurt, Germany
[4] Julius Maximilians Univ Wuerzburg, Fac Math & Comp Sci, D-97422 Wurzburg, Germany
关键词
Simulation and animation; laser radar; range sensing; PRECISION;
D O I
10.1142/S1793351X24300012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, an analysis of the precision of range sensors is presented. Light Detection and Ranging (LIDAR) data from three different sensors (HLS-LFCD-LDS, SICK TIM561, and Kinect V2), stereo data from the Realsense D435, and structured light data from both Kinect V1 for Xbox and the Xtion PRO Live were analyzed regarding the influence of range, incident angle to the surface, and surface material. In addition, a comparison with standard deviation models based on vendor-provided specifications was performed. We found that the vendor specifications are in general not specific enough to facilitate accurate sensor simulations. Therefore, we developed a data-driven model for range precision. Our model can be used to create realistic sensor simulations and to develop robot navigation algorithms weighing sensor range readings based on the precision.
引用
收藏
页码:205 / 222
页数:18
相关论文
共 50 条
  • [1] A Data-driven Generative Model for GPS Sensors for Autonomous Driving
    Karlsson, Erik
    Mohammadiha, Nasser
    PROCEEDINGS 2018 IEEE/ACM 1ST INTERNATIONAL WORKSHOP ON SOFTWARE ENGINEERING FOR AI IN AUTONOMOUS SYSTEMS (SEFAIAS), 2018, : 1 - 5
  • [2] Data-driven design of soft sensors
    James T. Glazar
    Vivek B. Shenoy
    Nature Machine Intelligence, 2022, 4 : 194 - 195
  • [3] Data-driven design of soft sensors
    Glazar, James T.
    Shenoy, Vivek B.
    NATURE MACHINE INTELLIGENCE, 2022, 4 (03) : 194 - 195
  • [4] Data-Driven Virtual Sensing for Electrochemical Sensors
    Sangiorgi, Lucia
    Sberveglieri, Veronica
    Carnevale, Claudio
    De Nardi, Sabrina
    Nunez-Carmona, Estefania
    Raccagni, Sara
    SENSORS, 2024, 24 (05)
  • [5] Data-driven Soft Sensors in the process industry
    Kadlec, Petr
    Gabrys, Bogdan
    Strandt, Sibylle
    COMPUTERS & CHEMICAL ENGINEERING, 2009, 33 (04) : 795 - 814
  • [6] A Recursive Data-driven Model for Traffic Flow Predictions for Locations with Faulty Sensors
    Alemazkoor, Negin
    Wang, Shiyu
    Meidani, Hadi
    2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 1646 - 1651
  • [7] A data-driven hysteresis model
    Ikhouane, Faycal
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (09):
  • [8] A data-driven reflectance model
    Matusik, W
    Pfister, H
    Brand, M
    McMillan, L
    ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03): : 759 - 769
  • [9] Data-driven Development and Maintenance of Soft-Sensors
    Abonyi, Janos
    Farsang, Barbara
    Kulcsar, Tibor
    2014 IEEE 12TH INTERNATIONAL SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI), 2014, : 239 - 244
  • [10] Data-Driven Distributed Optical Vibration Sensors: A Review
    Shao, Li-Yang
    Liu, Shuaiqi
    Bandyopadhyay, Sankhyabrata
    Yu, Feihong
    Xu, Weijie
    Wang, Chao
    Li, Hengchao
    Vai, Mang I.
    Du, Linlin
    Zhang, Jinsheng
    IEEE SENSORS JOURNAL, 2020, 20 (12) : 6224 - 6239