Using Machine Learning for Motion Analysis to Early Detect Autism Spectrum Disorder: A Systematic Review

被引:6
|
作者
Simeoli, Roberta [1 ,2 ]
Rega, Angelo [1 ,2 ]
Cerasuolo, Mariangela [3 ,4 ]
Nappo, Raffaele [2 ]
Marocco, Davide [1 ]
机构
[1] Univ Naples Federico II, Dept Humanist Studies, I-80138 Naples, Italy
[2] Neapolisanit SRL, Rehabil Ctr, I-80044 Ottaviano, Italy
[3] Assoc Italiana Assistenza Spast Onlus Sez Cicciano, I-80033 Cicciano, Italy
[4] Univ Ostrava, Fac Med, CZ-70103 Ostrava, Czech Republic
关键词
Machine learning; Autism spectrum disorder; Early diagnosis; Biomarkers; Wearable sensors; HIGH-FUNCTIONING AUTISM; MOTOR DYSFUNCTION; CHILDREN; COORDINATION; DIAGNOSIS; RISK;
D O I
10.1007/s40489-024-00435-4
中图分类号
B844 [发展心理学(人类心理学)];
学科分类号
040202 ;
摘要
Diagnosis of autism spectrum disorder (ASD) is typically performed using traditional tools based on behavioral observations. However, these diagnosis methods are time-consuming and can be misleading. Integrating machine learning algorithms with technological screening tools within the typical behavioral observations can possibly enhance the traditional assessment and diagnostic process. In the last two decades, to improve the accuracy and reliability of autism detection, many clinicians and researchers began to develop new screening methods by means of advanced technology like machine learning (ML). These methods include artificial neural networks (ANN), support vector machines (SVM), a priori algorithms, and decision trees (DT). Mostly, these methods have been applied to pre-existing datasets, derived from the standard diagnostic and assessment tools, to implement and test predictive models. On the other hand, the detection of new objective behavioral measures such as biomarkers could lead to a significant strengthening of existing screening tools. In the present study, we carried out a critical review of the literature about the latest findings in this field. The aim was to shed light about the effectiveness of using ML systems for motion analysis to enhance both clinical assessment and diagnostic processes. Specifically, we discussed the contribution of ML systems in promoting early diagnosis of ASD. The literature review showed that motion patterns ML analysis predicts ASD classification as accurately as that of classical gold standard tools. However, the application of these methods is still challenging, as discussed in this review.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Identification of autism spectrum disorder using electroencephalography and machine learning: a review
    Ranaut, Anamika
    Khandnor, Padmavati
    Chand, Trilok
    JOURNAL OF NEURAL ENGINEERING, 2024, 21 (06)
  • [2] Application of Machine Learning Techniques to Detect the Children with Autism Spectrum Disorder
    Liao, Mengyi
    Duan, Hengyao
    Wang, Guangshuai
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [3] Machine learning with neuroimaging data to identify autism spectrum disorder: a systematic review and meta-analysis
    Song, Da-Yea
    Topriceanu, Constantin-Cristian
    Ilie-Ablachim, Denis C.
    Kinali, Maria
    Bisdas, Sotirios
    NEURORADIOLOGY, 2021, 63 (12) : 2057 - 2072
  • [4] Machine learning with neuroimaging data to identify autism spectrum disorder: a systematic review and meta-analysis
    Da-Yea Song
    Constantin-Cristian Topriceanu
    Denis C. Ilie-Ablachim
    Maria Kinali
    Sotirios Bisdas
    Neuroradiology, 2021, 63 : 2057 - 2072
  • [5] Analysis and Detection of Autism Spectrum Disorder Using Machine Learning Techniques
    Raj, Suman
    Masood, Sarfaraz
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 994 - 1004
  • [6] Predictive Analysis of Autism Spectrum Disorder (ASD) using Machine Learning
    Farooqi, Naurin
    Bukhari, Faisal
    Iqbal, Waheed
    2021 INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT 2021), 2021, : 305 - 310
  • [7] A systematic review of structural MRI biomarkers in autism spectrum disorder: A machine learning perspective
    Pagnozzi, Alex M.
    Conti, Eugenia
    Calderoni, Sara
    Fripp, Jurgen
    Rose, Stephen E.
    INTERNATIONAL JOURNAL OF DEVELOPMENTAL NEUROSCIENCE, 2018, 71 : 68 - 82
  • [8] Machine learning approaches for electroencephalography and magnetoencephalography analyses in autism spectrum disorder: A systematic review
    Das, Sushmit
    Zomorrodi, Reza
    Mirjalili, Mina
    Kirkovski, Melissa
    Blumberger, Daniel M.
    Rajji, Tarek K.
    Desarkar, Pushpal
    PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2023, 123
  • [9] Autism Spectrum Disorder Studies Using fMRI Data and Machine Learning: A Review
    Liu, Meijie
    Li, Baojuan
    Hu, Dewen
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [10] A Review of Machine Learning Models for Predicting Autism Spectrum Disorder
    Kanchanamala, P.
    Sagar, G. Leela
    HELIX, 2019, 9 (01): : 4797 - 4801