Analytical study of the pantograph equation using Jacobi theta functions

被引:2
|
作者
Zhang, Changgui [1 ]
机构
[1] Univ Lille, Sci Cite, Lab P Painleve,UMR, FST,CNRS 8524,Dept Math, F-59655 Villeneuve dAscq, France
关键词
Pantograph equation; q-difference equation; Connection problem; Jacobi theta-function; DIFFERENTIAL EQUATION;
D O I
10.1016/j.jat.2023.105974
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to use the analytic theory of linear q-difference equations for the study of the functional-differential equation y '(x) = ay(qx) + by(x), where a and b are two non-zero real or complex numbers. When 0 < q <1 and y(0) = 1, the associated Cauchy problem admits a unique power Sigma(n >= 0) (-a/b; q)n/n! (bx)(n), that converges in the whole complex x-plane. The principal result series solution, obtained in the paper explains how to express this entire function solution into a linear combination of solutions at infinity with the help of integral representations involving Jacobi theta functions. As a by-product, this connection formula between zero and infinity allows one to rediscover the classic theorem of Kato and McLeod on the asymptotic behavior of the solutions over the real axis.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] PROBABILISTIC ASPECTS OF JACOBI THETA FUNCTIONS
    Salminen, Paavo
    Vignat, Christophe
    MATHEMATICA SCANDINAVICA, 2024, 130 (03) : 607 - 638
  • [2] Optimal mock Jacobi theta functions
    Cheng, Miranda C. N.
    Duncan, John F. R.
    ADVANCES IN MATHEMATICS, 2020, 372
  • [3] Approximate lattice detection in MIMO communications using Jacobi theta functions
    Gujrathi, Mandar L.
    Clarkson, I. Vaughan L.
    2008 AUSTRALIAN COMMUNICATIONS THEORY WORKSHOP, 2008, : 135 - 138
  • [4] Theta functions and Siegel-Jacobi forms
    Runge, B
    ACTA MATHEMATICA, 1995, 175 (02) : 165 - 196
  • [5] Jacobi Theta Functions over Number Fields
    Olav K. Richter
    Howard Skogman
    Monatshefte für Mathematik, 2004, 141 : 219 - 235
  • [6] Jacobi theta functions over number fields
    Richter, OK
    Skogman, H
    MONATSHEFTE FUR MATHEMATIK, 2004, 141 (03): : 219 - 235
  • [7] ON THETA-FUNCTIONS FOR JACOBI-VARIETIES
    GUNNING, RC
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1987, 46 : 89 - 98
  • [8] On a method for deriving formulas for the Jacobi theta functions
    Gladun, S. E.
    MATHEMATICAL NOTES, 2014, 96 (3-4) : 484 - 490
  • [9] On a method for deriving formulas for the Jacobi theta functions
    S. E. Gladun
    Mathematical Notes, 2014, 96 : 484 - 490
  • [10] The degenerating behaviour of Jacobi's theta functions
    Schiefermayr, Klaus
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2015, 26 (03) : 226 - 228