Γ-convergence for Free-Discontinuity Problems in Linear Elasticity: Homogenization and Relaxation

被引:0
|
作者
Friedrich, Manuel [1 ,2 ]
Perugini, Matteo [3 ]
Solombrino, Francesco [4 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[2] Univ Munster, Math Munster, Einsteinstr 62, F-48149 Munster, France
[3] Univ Milan, Dipartimento Matemat Federigo Enriques, Via Saldini 50, I-20133 Milan, Italy
[4] Univ Napoli Federico II, Dipartimento Matemat & Applicazioni Renato Cacciop, Via Cintia, I-80126 Naples, Italy
关键词
Variational fracture; free-discontinuity problems; functions of bounded deformation; Gamma-convergence; homogenization; relaxation; INTEGRAL-REPRESENTATION; STRONG MINIMIZERS; FINITE PERIMETER; FRACTURE; EXISTENCE; APPROXIMATION; FUNCTIONALS; SETS; SEMICONTINUITY; PARTITIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze the Gamma-convergence of sequences of free discontinuity functionals arising in the modeling of linear elastic solids with surface discontinuities, including phenomena as fracture, damage, or material voids. We prove compactness with respect to Gamma-convergence and represent the Gamma-limit in an integral form defined on the space of generalized special functions of bounded deformation (GSBD(p)). We identify the integrands in terms of asymptotic cell formulas and prove a non-interaction property between bulk and surface contributions. Eventually, we investigate sequences of corresponding boundary value problems and show convergence of minimum values and minimizers. In particular, our techniques allow us to characterize relaxations of functionals on GSBD(p), and cover the classical case of periodic homogenization.
引用
收藏
页码:1949 / 2023
页数:75
相关论文
共 50 条
  • [1] Γ-convergence of free-discontinuity problems
    Cagnetti, Filippo
    Dal Maso, Gianni
    Scardia, Lucia
    Zeppieri, Caterina Ida
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (04): : 1035 - 1079
  • [2] Approximation of free-discontinuity problems by elliptic functionals via Γ-convergence
    Acerbi, E
    Braides, A
    ASYMPTOTIC ANALYSIS, 1999, 21 (3-4) : 317 - 329
  • [3] Relaxation of free-discontinuity energies with obstacles
    Focardi, Matteo
    Gelli, Maria Stella
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2008, 14 (04) : 879 - 896
  • [4] Non-local approximation of free-discontinuity problems in linear elasticity and application to stochastic homogenisation
    Marziani, Roberta
    Solombrino, Francesco
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023,
  • [5] Regular approximation of free-discontinuity problems
    Bouchitté, G
    Dubs, C
    Seppecher, P
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2000, 10 (07): : 1073 - 1097
  • [6] Stochastic Homogenisation of Free-Discontinuity Problems
    Cagnetti, Filippo
    Dal Maso, Gianni
    Scardia, Lucia
    Zeppieri, Caterina Ida
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 233 (02) : 935 - 974
  • [7] Stochastic Homogenisation of Free-Discontinuity Problems
    Filippo Cagnetti
    Gianni Dal Maso
    Lucia Scardia
    Caterina Ida Zeppieri
    Archive for Rational Mechanics and Analysis, 2019, 233 : 935 - 974
  • [8] Non-local approximation of free-discontinuity problems with linear growth
    Lussardi, Luca
    Vitali, Enrico
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2007, 13 (01) : 135 - 162
  • [9] Second-order approximation of free-discontinuity problems with linear growth
    Esposito, Teresa
    ASYMPTOTIC ANALYSIS, 2018, 110 (1-2) : 21 - 52
  • [10] Integral representation and G-convergence for free-discontinuity problems with p(.)-growth
    Scilla, Giovanni
    Solombrino, Francesco
    Stroffolini, Bianca
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (08)