Deep Learning Based Model for Fundus Retinal Image Classification

被引:1
|
作者
Thanki, Rohit [1 ]
机构
[1] IEEE, Gujarat Sect, Rajkot, Gujarat, India
关键词
Convolutional neural network; Fundus retinal image; Glaucoma; Deep learning; Image classification; GLAUCOMA DETECTION;
D O I
10.1007/978-3-031-27609-5_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Several types of eye diseases can lead to blindness, including glaucoma. For better diagnosis, retinal images should be assessed using advanced artificial intelligence techniques, which are used to identify a wide range of eye diseases. In this paper, support vector machine (SVM), random forest (RF), decision tree (DT), and convolutional neural network (CNN) methods are used to classify fundus retinal images of healthy and glaucomatous patients. This study tests various models on a small dataset of 30 high-resolution fundus retinal images. To classify these retinal images, the proposed CNN-based classifier achieved a classification accuracy of 80%. Furthermore, according to the confusion matrix, the proposed CNN model was 80% accurate for the healthy and glaucoma classes. In the glaucoma case, the CNN-based classifier proved superior to other classifiers based on the comparative analysis.
引用
收藏
页码:238 / 249
页数:12
相关论文
共 50 条
  • [1] Mayfly optimization with deep learning enabled retinal fundus image classification model
    Gupta, Indresh Kumar
    Choubey, Abha
    Choubey, Siddhartha
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 102
  • [2] Classification of Cataract Fundus Image Based on Deep Learning
    Dong, Yanyan
    Zhang, Qinyan
    Qiao, Zhiqiang
    Yang, Ji-Jiang
    2017 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2017, : 127 - 131
  • [3] Salp swarm optimisation with deep transfer learning enabled retinal fundus image classification model
    Gupta I.K.
    Choubey A.
    Choubey S.
    International Journal of Networking and Virtual Organisations, 2022, 27 (02) : 163 - 180
  • [4] Artifical intelligence with optimal deep learning enabled automated retinal fundus image classification model
    Gupta, Indresh Kumar
    Choubey, Abha
    Choubey, Siddhartha
    EXPERT SYSTEMS, 2022, 39 (10)
  • [5] A deep learning-based framework for retinal fundus image enhancement
    Lee, Kang Geon
    Song, Su Jeong
    Lee, Soochahn
    Yu, Hyeong Gon
    Kim, Dong Ik
    Lee, Kyoung Mu
    PLOS ONE, 2023, 18 (03):
  • [6] Deep learning for classification of laterality of retinal fundus images
    Diaz, L.
    Vistisen, D.
    Jorgensen, M. Eika
    Valerius, M.
    Hajari, J. Nouri
    Andersen, H. L.
    Byberg, S.
    DIABETOLOGIA, 2020, 63 (SUPPL 1) : S394 - S394
  • [7] A deep learning model for classification of diabetic retinopathy in eye fundus images based on retinal lesion detection
    delaPava, Melissa
    Rios, Hernan
    Rodriguez, Francisco J.
    Perdomo, Oscar J.
    Gonzalez, Fabio A.
    17TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2021, 12088
  • [8] Deep Learning Based Ocular Disease Classification using Retinal Fundus Images
    Shrivastava, Aman
    Kamble, Ravi
    Kulkarni, Sucheta
    Singh, Shivangi
    Hegde, Atul
    Kashikar, Rashmi
    Das, Taraprasad
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (11)
  • [9] Deep learning-based classification of retinal atrophy using fundus autofluorescence imaging
    Miere, Alexandra
    Capuano, Vittorio
    Kessler, Arthur
    Zambrowski, Olivia
    Jung, Camille
    Colantuono, Donato
    Pallone, Carlotta
    Semoun, Oudy
    Petit, Eric
    Souied, Eric H.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)
  • [10] Deep learning-based classification of retinal atrophy using fundus autofluorescence imaging
    Miere, Alexandra
    Capuano, Vittorio
    Kessler, Arthur
    Zambrowski, Olivia
    Jung, Camille
    Colantuono, Donato
    Pallone, Carlotta
    Semoun, Oudy
    Petit, Eric
    Souied, Eric
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 130