On G1 and G2 Hermite interpolation by spatial Algebraic-Trigonometric Pythagorean Hodograph curves with polynomial parametric speed

被引:1
|
作者
Bay, Thierry [1 ]
Cattiaux-Huillard, Isabelle [1 ]
Romani, Lucia [2 ]
Saini, Laura [1 ,3 ]
机构
[1] Univ Polytech Hauts de France, CERAMATHS, FR CNRS 2037, F-59313 Valenciennes, France
[2] Univ Bologna, Alma Mater Studiorum, Dip Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy
[3] Junia, Comp Sci & Math, F-59000 Lille, France
关键词
Algebraic-Trigonometric curves; Pythagorean Hodograph; Polynomial parametric speed; G(1) andG(2 )Hermite interpolation; CONSTRUCTION;
D O I
10.1016/j.amc.2023.128240
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we focus on the class of Algebraic-Trigonometric Pythagorean Hodograph curves (ATPH for short) that is characterized by a purely polynomial parametric speed. Within such a class of ATPH curves, we first construct interpolants to spatial G1 Hermite data equipped with curvature values. With respect to the solutions proposed in [24], the G1 Hermite ATPH interpolants we here propose are characterized by C0- and C1-continuous curvature plots. Secondly, we investigate the existence of ATPH interpolants to spatial G2 Hermite data and show that solutions exist under some restrictions on the Hermite input data.
引用
收藏
页数:16
相关论文
共 35 条
  • [1] Algebraic-Trigonometric Pythagorean-Hodograph curves and their use for Hermite interpolation
    Romani, Lucia
    Saini, Laura
    Albrecht, Gudrun
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (5-6) : 977 - 1010
  • [2] Algebraic-Trigonometric Pythagorean-Hodograph curves and their use for Hermite interpolation
    Lucia Romani
    Laura Saini
    Gudrun Albrecht
    Advances in Computational Mathematics, 2014, 40 : 977 - 1010
  • [3] G1 Hermite interpolation by Minkowski Pythagorean hodograph cubics
    Kosinka, J
    Jüttler, B
    COMPUTER AIDED GEOMETRIC DESIGN, 2006, 23 (05) : 401 - 418
  • [4] Interpolation by G2 Quintic Pythagorean-Hodograph Curves
    Jaklic, Gasper
    Kozak, Jernej
    Krajnc, Marjeta
    Vitrih, Vito
    Zagar, Emil
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2014, 7 (03) : 374 - 398
  • [5] Geometric Hermite interpolation by a family of spatial algebraic-trigonometric PH curves
    Wu, Weidong
    Yang, Xunnian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 388
  • [6] Support Function of Pythagorean Hodograph Cubics and G1 Hermite Interpolation
    Cernohorska, Eva
    Sir, Zbynek
    ADVANCES IN GEOMETRIC MODELING AND PROCESSING, PROCEEDINGS, 2010, 6130 : 29 - 42
  • [7] Solvability of G1 Hermite interpolation by spatial Pythagorean-hodograph cubics and its selection scheme
    Kwon, Song-Hwa
    COMPUTER AIDED GEOMETRIC DESIGN, 2010, 27 (02) : 138 - 149
  • [8] ON INTERPOLATION BY PLANAR CUBIC G2 PYTHAGOREAN-HODOGRAPH SPLINE CURVES
    Jaklic, Gasper
    Kozak, Jernej
    Krajnc, Marjeta
    Vitrih, Vito
    Zagar, Emil
    MATHEMATICS OF COMPUTATION, 2010, 79 (269) : 305 - 326
  • [9] G2/C1 Hermite interpolation of offset curves of parametric regular curves
    Ahn, Young Joon
    AIMS MATHEMATICS, 2023, 8 (12): : 31008 - 31021
  • [10] Interactive G1 and G2 Hermite Interpolation Using Coupled Log-aesthetic Curves
    Nagy F.
    Yoshida N.
    Hoffmann M.
    Computer-Aided Design and Applications, 2022, 19 (06): : 1216 - 1235