Design and analysis of multistable curvilinear-fiber laminates based on continuous fiber 3D printing of thermosetting resin matrix

被引:17
|
作者
Zhang, Zheng [1 ,2 ]
Xu, Jiaze [1 ]
Ma, Yonglong [1 ]
Sun, Min [1 ,2 ]
Chai, Hao [3 ]
Wu, Huaping [1 ,2 ]
Jiang, Shaofei [1 ,2 ]
机构
[1] Zhejiang Univ Technol, Coll Mech Engn, Hangzhou 310014, Peoples R China
[2] Zhejiang Univ Technol, Key Lab Special Purpose Equipment & Adv Proc Techn, Minist Educ & Zhejiang Prov, Hangzhou 310014, Peoples R China
[3] Zhejiang Univ Technol, Zhijiang Coll, Shaoxing 312030, Peoples R China
基金
中国国家自然科学基金;
关键词
Multistable laminate; 3D printing; Variable stiffness; Curvilinear-fiber; Thermosetting composite; COMPOSITE PLATES; BEHAVIOR;
D O I
10.1016/j.compstruct.2022.116616
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A novel manufacturing method for curvilinear-fiber multistable laminates using continuous fiber 3D printing technology is proposed, and a numerical and experimental investigation on the morphing behavior is performed. Traditional multistable laminates are developed from multiple straight-fiber laminates jointed or bolted together, but the designability of straight-fiber laminates is limited. More importantly, the fibers at the lap joints or bolted connection are discontinuous or fractured, which cause interfacial separation or stress concentration. Different from the traditional preparation process, continuous fiber 3D printing technology ensures the continuity of adjacent deformable elements and integrity of the structure, thereby reducing the interfacial separation or stress concentration of the laminates caused by fiber discontinuity or fracture, and providing the possibility for free variation of fiber angle. Continuous fiber 3D printing technology further improves the design space for com-posites instead of traditional straight-fiber laminate. In this paper, two different curvilinear-fiber multistable laminates are designed and prepared, and a finite element model was developed to predict the possible cured configurations and analysis the snap behavior. The numerical and experimental results show good agreement in stable configurations and snap process. Subsequently, a parametric study is carried out to explore the effect of different angle parameters on the snap process and stable configurations.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Morphing characteristics and damage analysis of 3D printing variable stiffness bistable laminates based on continuous fiber thermosetting composites
    Zhang, Zheng
    Xu, Jiaze
    Ma, Yonglong
    Sun, Min
    Pan, Baisong
    Chai, Hao
    Zhang, Guang
    Jiang, Shaofei
    COMPOSITE STRUCTURES, 2023, 315
  • [2] Research progress in 3D printing of continuous fiber-reinforced resin matrix composites
    Zhang, Ming
    Sun, Zhonggang
    Guo, Yanhua
    Dai, Guoqing
    Alexandrov, V. I.
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2025, 53 (02): : 50 - 70
  • [3] Fiber Traction Printing: A 3D Printing Method of Continuous Fiber Reinforced Metal Matrix Composite
    Xin Wang
    Xiaoyong Tian
    Qin Lian
    Dichen Li
    Chinese Journal of Mechanical Engineering, 2020, 33
  • [4] Fiber Traction Printing: A 3D Printing Method of Continuous Fiber Reinforced Metal Matrix Composite
    Xin Wang
    Xiaoyong Tian
    Qin Lian
    Dichen Li
    Chinese Journal of Mechanical Engineering, 2020, (02) : 77 - 87
  • [5] Fiber Traction Printing: A 3D Printing Method of Continuous Fiber Reinforced Metal Matrix Composite
    Wang, Xin
    Tian, Xiaoyong
    Lian, Qin
    Li, Dichen
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2020, 33 (01)
  • [6] Fiber Traction Printing: A 3D Printing Method of Continuous Fiber Reinforced Metal Matrix Composite
    Xin Wang
    Xiaoyong Tian
    Qin Lian
    Dichen Li
    Chinese Journal of Mechanical Engineering, 2020, 33 (02) : 77 - 87
  • [7] CONTINUOUS FIBER 3D PRINTING Development and Application of Continuous Fiber 3D Printing Process for Aerospace
    Koon, Bob
    Stranberg, Nathan
    SAMPE JOURNAL, 2021, 57 (06) : 10 - 18
  • [8] Embedded 3D printing of UV-curable thermosetting composites with continuous fiber
    Ding, Yuchen
    Gracego, Alston X.
    Wang, Yuanrui
    Dong, Guoying
    Dunn, Martin L.
    Yu, Kai
    MATERIALS HORIZONS, 2024, 11 (18) : 4378 - 4392
  • [9] Optimization design and 3D printing of curvilinear fiber reinforced variable stiffness composites
    Hou, Zhanghao
    Tian, Xiaoyong
    Zhang, Junkang
    Zheng, Ziqi
    Zhe, Lu
    Li, Dichen
    Malakhov, Andrei V.
    Polilov, Alexander N.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 201
  • [10] The Nozzle Structure Design and Analysis for Continuous Carbon Fiber Composite 3D Printing
    Zhang, Fan
    Ma, Guofeng
    Tan, Yuegang
    PROCEEDINGS OF THE 2017 7TH INTERNATIONAL CONFERENCE ON ADVANCED DESIGN AND MANUFACTURING ENGINEERING (ICADME 2017), 2017, 136 : 193 - 199