Existence of a periodic solution for superlinear second order ODEs

被引:4
|
作者
Gidoni, Paolo [1 ,2 ,3 ]
机构
[1] Univ Udine, Polytech Dept Engn & Architecture, Udine, Italy
[2] Czech Acad Sci, Inst Informat Theory & Automat, Prague, Czech Republic
[3] Univ Udine, Dipartimento Politecn Ingn & Architettura, Via Sci 206, I-33100 Udine, Italy
关键词
Periodic solutions; Superlinear differential equations; Rotation; BOUNDARY-VALUE-PROBLEMS; MULTIPLE SOLUTIONS; CONTINUATION; EQUATIONS;
D O I
10.1016/j.jde.2022.11.054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a necessary and sufficient condition for the existence of a T-periodic solution for the time -periodic second order differential equation x spacing diaeresis + f (t, x) + p(t, x, x) = 0, where f grows superlinearly in x uniformly in time, while p is bounded. Our method is based on a fixed-point theorem which uses the rotational properties of the dynamics.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:401 / 417
页数:17
相关论文
共 50 条