Optimization Strategies and Nonlinear Control for Hybrid Renewable Energy Conversion System

被引:20
|
作者
Mansouri, Adil [1 ]
El Magri, Abdelmounime [1 ]
Lajouad, Rachid [1 ]
Giri, Fouad [2 ]
Watil, Aziz [1 ]
机构
[1] Hassan II Univ Casablanca, EEIS Lab, ENSET Mohammedia, Casablanca, Morocco
[2] Univ Caen Normandie, Caen, France
关键词
Backstepping control; hybrid renewable energy system; integral sliding mode control; photovoltaic; wind turbine;
D O I
10.1007/s12555-023-0058-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on controlling and optimizing a hybrid renewable energy system. The complex interactions and intermittent nature of renewable sources pose challenges to grid stability, necessitating sophisticated control strategies. The system includes a photovoltaic generator and a wind energy conversion system with a permanent magnet synchronous generator. Two key innovations are presented: i) connecting the photovoltaic generator to the grid in hybridization with the wind turbine without using a DC/DC converter, simplifying the structure, reducing losses, and ensuring grid stability and reliability; and ii) designing multi-objective controllers using the maximum power point tracking method based solely on electrical parameters, leading to fewer sensors and higher reliability compared to previous methods that required additional measurements like wind speed and irradiance. To address these challenges, a multiloop nonlinear controller is proposed, employing integral sliding mode and backstepping design techniques based on an accurate nonlinear system model. The stability of the multiloop control system is ensured using a suitable Lyapunov function.
引用
收藏
页码:3796 / 3803
页数:8
相关论文
共 50 条
  • [1] Optimization Strategies and Nonlinear Control for Hybrid Renewable Energy Conversion System
    Adil Mansouri
    Abdelmounime El Magri
    Rachid Lajouad
    Fouad Giri
    Aziz Watil
    International Journal of Control, Automation and Systems, 2023, 21 : 3796 - 3803
  • [2] Novel Nonlinear Control and Optimization Strategies for Hybrid Renewable Energy Conversion System
    Jai Andaloussi, Z.
    Raihani, A.
    El Magri, A.
    Lajouad, R.
    El Fadili, A.
    MODELLING AND SIMULATION IN ENGINEERING, 2021, 2021
  • [3] Nonlinear control strategies with maximum power point tracking for hybrid renewable energy conversion systems
    Mansouri, Adil
    El Magri, Abdelmounime
    Lajouad, Rachid
    Giri, Fouad
    Watil, Aziz
    ASIAN JOURNAL OF CONTROL, 2024, 26 (02) : 1047 - 1056
  • [4] Control strategies for a hybrid renewable energy system: A review
    Arul, P. G.
    Ramachandaramurthy, Vigna K.
    Rajkumar, R. K.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 42 : 597 - 608
  • [5] Analysis, Design and Control of a Standalone Hybrid Renewable Energy Conversion System
    Adhikari, Neha
    Singh, Bhim
    Vyas, A. L.
    Chandra, Ambrish
    Kamal-Al-Haddad
    2013 4TH IEEE INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS FOR DISTRIBUTED GENERATION SYSTEMS (PEDG), 2013,
  • [6] Optimization of Renewable Energy Hybrid System
    Ab Razak, Juhari
    Sopian, Kamaruzzaman
    Ali, M. Yahya Yusoff
    Alghoul, Mohammad Ahmed
    Zaharim, A.
    PC 2008: PROCEEDINGS OF THE 8TH WSEAS INTERNAITONAL CONFERENCE ON POWER SYSTEMS AND POWER TECHNOLOGY, 2008, : 271 - 276
  • [7] Sizing, optimization, control and energy management of hybrid renewable energy system—A review
    Ammari C.
    Belatrache D.
    Touhami B.
    Makhloufi S.
    Energy and Built Environment, 2022, 3 (04): : 399 - 411
  • [8] Optimal control strategies for a hybrid renewable energy system: an ALANN/RNN technique
    K. Mahendran
    S. U. Prabha
    Soft Computing, 2019, 23 : 13459 - 13475
  • [9] Optimization of a Hybrid Renewable Energy System with HOMER
    Chowdhury, Olly Roy
    Kim, Hong-Geun
    Cho, Yongyun
    Park, Jangwoo
    Shin, Changsun
    ADVANCED SCIENCE LETTERS, 2016, 22 (09) : 2363 - 2365
  • [10] Optimal control strategies for a hybrid renewable energy system: an ALANN/RNN technique
    Mahendran, K.
    Prabha, S. U.
    SOFT COMPUTING, 2019, 23 (24) : 13459 - 13475