Light-powered self-propelled trolley with a liquid crystal elastomer pendulum motor

被引:1
|
作者
Zuo, Wei [1 ]
Sun, Tianle [1 ]
Dai, Yuntong [1 ]
Li, Kai [1 ]
Zhao, Jun [1 ]
机构
[1] Anhui Jianzhu Univ, Sch Civil Engn, Hefei 230601, Anhui, Peoples R China
关键词
Steady illumination; Liquid crystal elastomer; Self-rotating; Motion driven; Self-propelled trolley; POLYMER; DEFORMATION; ORIENTATION; PHOTODRIVEN; MECHANICS; ACTUATION; MODEL;
D O I
10.1016/j.ijsolstr.2023.112500
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Conventional liquid crystal elastomer (LCE)-based robots require complex controllers and bulky power supplies, limiting their applications in areas such as microrobots and soft robots. In this paper, a light-powered selfpropelled trolley with a LCE pendulum motor is proposed, and the dynamics of its self-propelled motion is investigated theoretically. Under steady illumination, the periodic radial contraction and relaxation of LCE can trigger the trolley to move forward through the self-rotation of the LCE pendulum. The coupling of the opticallyinduced deformation with its motion facilitates the energy input from ambient illumination to compensate for the damping dissipation so as to maintain the sustained motion. Through theoretical modeling and numerical calculations, three typical motion states of the LCE pendulum are identified, namely static state, self-oscillation state and self-rotation state. Among them, the LCE pendulum can propel the trolley when it is self-rotating. The influences of different physical parameters on the system motion are studied quantitatively. The results show that the period of the simple pendulum and the trolley speed can be controlled by adjusting the illumination range, optical intensity, damping coefficient of pendulum and damping coefficient of trolley. The light-powered selfpropelled trolley constructed in current paper does not require complex controllers or self-contained power supplies, and possesses the characteristics of simple structure, light weight and energy efficient, which is of latent applied value in microrobots, soft robots and other fields.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Light-powered self-excited oscillation of a liquid crystal elastomer pendulum
    Liang, Xiaodong
    Chen, Zengfu
    Zhu, Lei
    Li, Kai
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 163
  • [2] A light-powered liquid crystal elastomer semi-rotary motor
    Li, Kai
    Qian, Peipei
    Hu, Haoyu
    Dai, Yuntong
    Ge, Dali
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2023, 284
  • [3] A Light-Powered Liquid Crystal Elastomer Roller
    Li, Kai
    Chen, Jiajing
    Hu, Haoyu
    Wu, Haiyang
    Dai, Yuntong
    Yu, Yong
    POLYMERS, 2023, 15 (21)
  • [4] Light-powered self-sustained chaotic motion of a liquid crystal elastomer-based pendulum
    Xu, Peibao
    Chen, Yaqi
    Sun, Xin
    Dai, Yuntong
    Li, Kai
    CHAOS SOLITONS & FRACTALS, 2024, 184
  • [5] Light-powered self-scrolling liquid crystal elastomer crane
    Li, Kai
    Wang, Pengxin
    Qiu, Yunlong
    Zhou, Lin
    PHYSICAL REVIEW E, 2025, 111 (01)
  • [6] Light-powered self-oscillation of a liquid crystal elastomer bow
    Li, Kai
    Liu, Yufeng
    Dai, Yuntong
    Yu, Yong
    JOURNAL OF SOUND AND VIBRATION, 2024, 570
  • [7] A light-powered self-rotating liquid crystal elastomer drill
    Yu, Yong
    Hu, Haoyu
    Wu, Haiyang
    Dai, Yuntong
    Li, Kai
    HELIYON, 2024, 10 (06)
  • [8] Light-powered self-excited motion of a liquid crystal elastomer rotator
    Quanbao Cheng
    Xiaodong Liang
    Kai Li
    Nonlinear Dynamics, 2021, 103 : 2437 - 2449
  • [9] Light-powered self-excited motion of a liquid crystal elastomer rotator
    Cheng, Quanbao
    Liang, Xiaodong
    Li, Kai
    NONLINEAR DYNAMICS, 2021, 103 (03) : 2437 - 2449
  • [10] A self-excited bistable oscillator with a light-powered liquid crystal elastomer
    Fang, Xiang
    Lou, Jia
    Wang, Ji
    Chuang, Kuo-Chih
    Wu, Hui Min
    Huang, Zhi Long
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 271