Hybrid Sparrow Search-Exponential Distribution Optimization with Differential Evolution for Parameter Prediction of Solar Photovoltaic Models

被引:7
|
作者
Abd El-Mageed, Amr A. [1 ]
Al-Hamadi, Ayoub [2 ]
Bakheet, Samy [3 ]
Abd El-Rahiem, Asmaa H. [4 ]
机构
[1] Sohag Univ, Dept Informat Syst, Sohag 82524, Egypt
[2] Otto Guericke Univ Magdeburg, Inst Informat Technol & Commun IIKT, D-39106 Magdeburg, Germany
[3] Sohag Univ, Fac Comp & Informat, Dept Informat Technol, Sohag 82524, Egypt
[4] South Valley Univ, Fac Sci, Dept Math, Qena 83511, Egypt
关键词
photovoltaic (PV) models; solar cell; Exponential Distribution Optimization (EDO); Sparrow Search Algorithm (SSA); differential evolution (DE); LAMBERT W-FUNCTION; DOUBLE-DIODE MODEL; SINGLE-DIODE; EXTRACTION; ALGORITHM; IDENTIFICATION; ENSEMBLE; CELLS;
D O I
10.3390/a17010026
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is difficult to determine unknown solar cell and photovoltaic (PV) module parameters owing to the nonlinearity of the characteristic current-voltage (I-V) curve. Despite this, precise parameter estimation is necessary due to the substantial effect parameters have on the efficacy of the PV system with respect to current and energy results. The problem's characteristics make the handling of algorithms susceptible to local optima and resource-intensive processing. To effectively extract PV model parameter values, an improved hybrid Sparrow Search Algorithm (SSA) with Exponential Distribution Optimization (EDO) based on the Differential Evolution (DE) technique and the bound-constraint modification procedure, called ISSAEDO, is presented in this article. The hybrid strategy utilizes EDO to improve global exploration and SSA to effectively explore the solution space, while DE facilitates local search to improve parameter estimations. The proposed method is compared to standard optimization methods using solar PV system data to demonstrate its effectiveness and speed in obtaining PV model parameters such as the single diode model (SDM) and the double diode model (DDM). The results indicate that the hybrid technique is a viable instrument for enhancing solar PV system design and performance analysis because it can predict PV model parameters accurately.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Parameter extraction of solar photovoltaic models using queuing search optimization and differential evolution
    Abd El-Mageed, Amr A.
    Abohany, Amr A.
    Saad, Hatem M. H.
    Sallam, Karam M.
    APPLIED SOFT COMPUTING, 2023, 134
  • [2] Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm
    Xiong, Guojiang
    Zhang, Jing
    Yuan, Xufeng
    Shi, Dongyuan
    He, Yu
    Yao, Gang
    SOLAR ENERGY, 2018, 176 : 742 - 761
  • [3] Heterogeneous differential evolution algorithm for parameter estimation of solar photovoltaic models
    Wang, Da
    Sun, Xingping
    Kang, Hongwei
    Shen, Yong
    Chen, Qingyi
    ENERGY REPORTS, 2022, 8 : 4724 - 4746
  • [4] A hybrid adaptive teaching-learning-based optimization and differential evolution for parameter identification of photovoltaic models
    Li, Shuijia
    Gong, Wenyin
    Wang, Ling
    Yan, Xuesong
    Hu, Chengyu
    ENERGY CONVERSION AND MANAGEMENT, 2020, 225
  • [5] A hybrid adaptive teaching-learning-based optimization and differential evolution for parameter identification of photovoltaic models
    Li, Shuijia
    Gong, Wenyin
    Wang, Ling
    Yan, Xuesong
    Hu, Chengyu
    ENERGY CONVERSION AND MANAGEMENT, 2020, 225
  • [6] A novel hybrid algorithm based on rat swarm optimization and pattern search for parameter extraction of solar photovoltaic models
    Eslami, Mahdiyeh
    Akbari, Ehsan
    Seyed Sadr, Seyed T.
    Ibrahim, Banar F.
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (08) : 2689 - 2713
  • [7] A state-of-the-art differential evolution algorithm for parameter estimation of solar photovoltaic models
    Gao, Shangce
    Wang, Kaiyu
    Tao, Sichen
    Jin, Ting
    Dai, Hongwei
    Cheng, Jiujun
    ENERGY CONVERSION AND MANAGEMENT, 2021, 230
  • [8] Fractional Order Differential Evolution to Solve Parameter Estimation Problem of Solar Photovoltaic Models
    Wang, Kaiyu
    Zhou, MengChu
    Yang, Jiaru
    Liu, Sicheng
    Gao, Shangce
    ADVANCES IN SWARM INTELLIGENCE, PT I, ICSI 2024, 2024, 14788 : 211 - 222
  • [9] A population diversity-controlled differential evolution for parameter estimation of solar photovoltaic models
    Yu, Yang
    Wang, Kaiyu
    Zhang, Tengfei
    Wang, Yirui
    Peng, Chen
    Gao, Shangce
    Sustainable Energy Technologies and Assessments, 2022, 51
  • [10] A population diversity-controlled differential evolution for parameter estimation of solar photovoltaic models
    Yu, Yang
    Wang, Kaiyu
    Zhang, Tengfei
    Wang, Yirui
    Peng, Chen
    Gao, Shangce
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 51