On the convergence of degenerate risk sensitive filters

被引:1
|
作者
Zorzi, Mattia [1 ]
Yi, Shenglun [1 ]
机构
[1] Univ Padua, Dipartimento Ingn Informaz, via Gradenigo 6-B, I-35131 Padua, Italy
关键词
Contraction mapping; Kalman filter; Riccati equation; Risk sensitive filtering; ALGEBRAIC RICCATI EQUATION; UNCERTAINTY; ROBUSTNESS;
D O I
10.1016/j.sysconle.2024.105732
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a degenerate risk sensitive filter which is an extension of the risk sensitive filtering paradigm to the case in which the evolution of the covariance matrix of the prediction error can be singular. We show that the corresponding risk sensitive Riccati iteration, describing the evolution of the covariance matrix of the prediction error, converges if the risk sensitivity parameter and the eigenvalues of the initial covariance matrix are sufficiently small.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A CONTRACTION ANALYSIS OF THE CONVERGENCE OF RISK-SENSITIVE FILTERS
    Levy, Bernard C.
    Zorzi, Mattia
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (04) : 2154 - 2173
  • [2] Fast convergence identification of hidden Markov models using risk-sensitive filters
    Thorne, JS
    Moore, JB
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (04) : 2461 - 2472
  • [3] Risk sensitive particle filters
    Thrun, S
    Langford, J
    Verma, V
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 961 - 968
  • [4] On the convergence of a Risk Sensitive like Filter
    Zorzi, Mattia
    Levy, Bernard C.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 4990 - 4995
  • [5] Robust Limits of Risk Sensitive Nonlinear Filters
    Wendell H. Fleming
    William M. McEneaney
    Mathematics of Control, Signals and Systems, 2001, 14 : 109 - 142
  • [6] Properties of risk-sensitive filters/estimators
    Banavar, RN
    Speyer, JL
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1998, 145 (01): : 106 - 112
  • [7] Robust limits of risk sensitive nonlinear filters
    Fleming, WH
    McEneaney, WM
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2001, 14 (02) : 109 - 142
  • [8] DEGENERATE CONVERGENCE OF SEMIGROUPS
    BOBROWSKI, A
    SEMIGROUP FORUM, 1994, 49 (03) : 303 - 327
  • [9] Risk sensitive particle filters for mitigating sample impoverishment
    Orguner, Umut
    Gustafsson, Fredrik
    2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 259 - 263
  • [10] Convergence for degenerate parabolic equations
    Feireisl, E
    Simondon, F
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 152 (02) : 439 - 466