A risk-aware reference trajectory resampling method for quadrotor tracking accuracy improvement

被引:0
|
作者
Zhang, Kaizheng [1 ]
Di, Jian [1 ]
Wang, Jiulong [1 ]
Wang, Xinghu [1 ]
Ji, Haibo [1 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei, Peoples R China
来源
ROBOTIC INTELLIGENCE AND AUTOMATION | 2024年 / 44卷 / 01期
基金
中国国家自然科学基金;
关键词
Autonomous quadrotors; Time scaling; Motion and path planning; Tracking monitor; GENERATION;
D O I
10.1108/RIA-10-2023-0151
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
PurposeMany existing trajectory optimization algorithms use parameters like maximum velocity or acceleration to formulate constraints. Due to the ignoring of the quadrotor actual tracking capability, the generated trajectories may not be suitable for tracking control. The purpose of this paper is to design an online adjustment algorithm to improve the overall quadrotor trajectory tracking performance.Design/methodology/approachThe authors propose a reference trajectory resampling layer (RTRL) to dynamically adjust the reference signals according to the current tracking status and future tracking risks. First, the authors design a risk-aware tracking monitor that uses the Frenet tracking errors and the curvature and torsion of the reference trajectory to evaluate tracking risks. Then, the authors propose an online adjusting algorithm by using the time scaling method.FindingsThe proposed RTRL is shown to be effective in improving the quadrotor trajectory tracking accuracy by both simulation and experiment results.Originality/valueInfeasible reference trajectories may cause serious accidents for autonomous quadrotors. The results of this paper can improve the safety of autonomous quadrotor in application.
引用
收藏
页码:108 / 119
页数:12
相关论文
共 50 条
  • [1] Risk-aware Trajectory Generation with Application to Safe Quadrotor Landing
    Mueller, Joerg
    Sukhatme, Gaurav S.
    2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 3642 - 3648
  • [2] Risk-Aware Trajectory Sampling for Quadrotor Obstacle Avoidance in Dynamic Environments
    Chen, Gang
    Peng, Peng
    Zhang, Peihan
    Dong, Wei
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (12) : 12606 - 12615
  • [3] Decentralized Risk-Aware Tracking of Multiple Targets
    Liu, Jiazhen
    Zhou, Lifeng
    Ramachandran, Ragesh
    Sukhatme, Gaurav S.
    Kumar, Vijay
    DISTRIBUTED AUTONOMOUS ROBOTIC SYSTEMS, DARS 2022, 2024, 28 : 408 - 423
  • [4] Risk-aware sensor scheduling and tracking of large constellations
    Ravago, Nicholas
    Jones, Brandon A.
    ADVANCES IN SPACE RESEARCH, 2021, 68 (06) : 2530 - 2550
  • [5] Risk-Aware Individual Trajectory Data Publishing with Differential Privacy
    Zhao, Jianzhe
    Mei, Jie
    Matwin, Stan
    Su, Yukai
    Yang, Yuancheng
    IEEE Access, 2021, 9 : 7421 - 7438
  • [6] Risk-Aware Individual Trajectory Data Publishing With Differential Privacy
    Zhao, Jianzhe
    Mei, Jie
    Matwin, Stan
    Su, Yukai
    Yang, Yuancheng
    IEEE ACCESS, 2021, 9 : 7421 - 7438
  • [7] Trajectory Tracking Control for Quadrotor Helicopter by Controlled Lagrangian Method
    Liu, Ce
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 610 - 616
  • [8] Trajectory Tracking and Disturbance Rejection for Quadrotor Helicopter by a Novel Method
    He, Changran
    Huang, Jie
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 600 - 605
  • [9] Trajectory Tracking Optimal Control with Backstepping Method for Quadrotor Helicopter
    Yin, Chun
    Shi, Xiaoyu
    Hu, Bingyang
    Cheng, Yuhua
    Huang, Xuegang
    Zhang, Bo
    Xue, Jianhong
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 7214 - 7218
  • [10] Trajectory Tracking Control of Quadrotor via Minimum Projection Method
    Hayashi, Takuya
    Ikeda, Ryoya
    Nakamura, Hisakazu
    IFAC PAPERSONLINE, 2021, 54 (14): : 512 - 517