共 50 条
Mechanobiological modulation of blood-brain barrier permeability by laser stimulation of endothelial-targeted nanoparticles
被引:13
|作者:
Li, Xiaoqing
[1
]
Cai, Qi
[2
]
Wilson, Blake A.
[2
]
Fan, Hanwen
[2
]
Dave, Harsh
[1
]
Giannotta, Monica
[3
]
Bachoo, Robert
[4
,5
,6
]
Qin, Zhenpeng
[1
,2
,7
,8
]
机构:
[1] Univ Texas Dallas, Dept Bioengn, Richardson, TX 75080 USA
[2] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75080 USA
[3] Inst Mol Oncol Fdn IFOM, I-20139 Milan, Italy
[4] Univ Texas Southwestern Med Ctr, Dept Internal Med, Dallas, TX 75390 USA
[5] Univ Texas Southwestern Med Ctr, Harold C Simmons Comprehens Canc Ctr, Dallas, TX 75390 USA
[6] Univ Texas Southwestern Med Ctr, Dept Neurol, Dallas, TX 75390 USA
[7] Univ Texas Dallas, Ctr Adv Pain Studies, Richardson, TX 75080 USA
[8] Univ Texas Southwestern Med Ctr, Dept Surg, Dallas, TX 75390 USA
来源:
关键词:
MECHANICAL STIMULATION;
CALCIUM WAVES;
ULTRASOUND;
ACTIN;
D O I:
10.1039/d2nr05062e
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
The blood-brain barrier (BBB) maintains an optimal environment for brain homeostasis but excludes most therapeutics from entering the brain. Strategies that reversibly increase BBB permeability are essential for treating brain diseases and are the focus of significant preclinical and translational interest. Picosecond laser excitation of tight junction-targeted gold nanoparticles (AuNPs) generates a nanoscale mechanical perturbation and induces a graded and reversible increase in BBB permeability (OptoBBB). Here we advanced this technique by showing that targeting endothelial glycoproteins leads to >10-fold higher targeting efficiency than targeting tight junctions both in vitro and in vivo. With both tight-junction and glycoprotein targeting, we demonstrate that OptoBBB is associated with a transient elevation and propagation of Ca2+, actin polymerization, and phosphorylation of ERK1/2 (extracellular signal-regulated protein kinase). These collectively activate the cytoskeleton resulting in increased paracellular permeability. The Ca2+ response involves internal Ca2+ depletion and Ca2+ influx with contributions from mechanosensitive ion channels (TRPV4, Piezo1). We provide insight into how the excitation of tight junction protein (JAM-A)-targeted and endothelial (glycocalyx)-targeted AuNPs leads to similar mechanobiological modulation of BBB permeability while targeting the glycocalyx significantly improves the nanoparticle accumulation in the brain. The results will be critical for guiding the future development of this technology for brain disease treatment.
引用
收藏
页码:3387 / 3397
页数:11
相关论文