Annotating for Artificial Intelligence Applications in Digital Pathology: A Practical Guide for Pathologists and Researchers

被引:11
|
作者
Montezuma, Diana [1 ,2 ,3 ]
Oliveira, Sara P. [4 ,5 ]
Neto, Pedro C. [4 ,5 ]
Oliveira, Domingos [1 ]
Monteiro, Ana [1 ]
Cardoso, Jaime S. [4 ,5 ]
Macedo-Pinto, Isabel [1 ]
机构
[1] IMP Diagnost, Porto, Portugal
[2] Portuguese Oncol Inst Porto IPO Porto, CI IPOP RISE CI IPOP Hlth Res Network, Porto Comprehens Canc Ctr Porto CCC, Res Ctr IPO Porto,Canc Biol & Epigenet Grp, Porto, Portugal
[3] Univ Porto, Inst Biomed Sci Abel Salazar ICBAS, Porto, Portugal
[4] Inst Syst & Comp Engn, Telecommun & Multimedia Unit, Technol & Sci INESC TEC, Porto, Portugal
[5] Univ Porto FEUP, Fac Engn, Porto, Portugal
关键词
annotation; artificial intelligence; computational pathology; digital pathology; MANAGEMENT; PLATFORM; CELL;
D O I
10.1016/j.modpat.2022.100086
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Training machine learning models for artificial intelligence (AI) applications in pathology often requires extensive annotation by human experts, but there is little guidance on the subject. In this work, we aimed to describe our experience and provide a simple, useful, and practical guide addressing annotation strategies for AI development in computational pathology. Annotation methodology will vary significantly depending on the specific study's objectives, but common difficulties will be present across different settings. We summarize key aspects and issue guiding principles regarding team interaction, ground-truth quality assessment, different annotation types, and available software and hardware options and address common difficulties while annotating. This guide was specifically designed for pathology annotation, intending to help pathologists, other researchers, and AI developers with this process.(c) 2022 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian Academy of Pathology. This is an open access article under the CC BY-NC-ND license (http://creativecommons. org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Artificial Intelligence in Pathology: A Simple and Practical Guide
    Yao, Keluo
    Singh, Amol
    Sridhar, Kaushik
    Blau, John L.
    Ohgami, Robert S.
    ADVANCES IN ANATOMIC PATHOLOGY, 2020, 27 (06) : 385 - 393
  • [2] Critical evaluation of artificial intelligence as a digital twin of pathologists for prostate cancer pathology
    Eminaga, Okyaz
    Abbas, Mahmoud
    Kunder, Christian
    Tolkach, Yuri
    Han, Ryan
    Brooks, James D.
    Nolley, Rosalie
    Semjonow, Axel
    Boegemann, Martin
    West, Robert
    Long, Jin
    Fan, Richard E.
    Bettendorf, Olaf
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [3] Critical evaluation of artificial intelligence as a digital twin of pathologists for prostate cancer pathology
    Okyaz Eminaga
    Mahmoud Abbas
    Christian Kunder
    Yuri Tolkach
    Ryan Han
    James D. Brooks
    Rosalie Nolley
    Axel Semjonow
    Martin Boegemann
    Robert West
    Jin Long
    Richard E. Fan
    Olaf Bettendorf
    Scientific Reports, 14
  • [4] Survey of liver pathologists to assess attitudes towards digital pathology and artificial intelligence
    McGenity, Clare
    Randell, Rebecca
    Bellamy, Christopher
    Burt, Alastair
    Cratchley, Alyn
    Goldin, Robert
    Hubscher, Stefan G.
    Neil, Desley A. H.
    Quaglia, Alberto
    Tiniakos, Dina
    Wyatt, Judy
    Treanor, Darren
    JOURNAL OF CLINICAL PATHOLOGY, 2024, 77 (01) : 27 - 33
  • [5] Applications of artificial intelligence in digital pathology for gastric cancer
    Chen, Sheng
    Ding, Ping'an
    Guo, Honghai
    Meng, Lingjiao
    Zhao, Qun
    Li, Cong
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [6] Artificial intelligence in digital breast pathology: Techniques and applications
    Ibrahim, Asmaa
    Gamble, Paul
    Jaroensri, Ronnachai
    Abdelsamea, Mohammed M.
    Mermel, Craig H.
    Chen, Po-Hsuan Cameron
    Rakha, Emad A.
    BREAST, 2020, 49 : 267 - 273
  • [7] A guide to artificial intelligence for cancer researchers
    Perez-Lopez, Raquel
    Laleh, Narmin Ghaffari
    Mahmood, Faisal
    Kather, Jakob Nikolas
    NATURE REVIEWS CANCER, 2024, 24 (06) : 427 - 441
  • [8] Applications of artificial intelligence in science: a practical guide for editors and authors
    Tinoco-Mesquita, Claudio
    Lopes-da Silva, Marcella
    Yahiro, Davi S.
    Ribeiro-Coelho, Brenda
    Silva, Fernanda Azevedo
    ARCHIVOS DE CARDIOLOGIA DE MEXICO, 2025,
  • [9] Digital pathology and artificial intelligence
    Niazi, Muhammad Khalid Khan
    Parwani, Anil V.
    Gurcan, Metin N.
    LANCET ONCOLOGY, 2019, 20 (05): : E253 - E261
  • [10] Practical Applications of Digital Pathology
    Saeed-Vafa, Daryoush
    Magliocco, Anthony M.
    CANCER CONTROL, 2015, 22 (02) : 137 - 141