Discontinuous Galerkin methods for the acoustic vibration problem

被引:0
|
作者
Lepe, Felipe [1 ]
Mora, David [1 ,2 ]
Vellojin, Jesus [1 ]
机构
[1] Univ Bio Bio, Dept Matemat, GIMNAP, Casilla 5-C, Concepcion, Chile
[2] Univ Concepcion, CI2MA, Concepcion, Chile
关键词
Eigenvalue problems; Discontinuous Galerkin method; Error estimates; SPECTRAL APPROXIMATION; FORMULATION;
D O I
10.1016/j.cam.2023.115700
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In two and three dimension we analyze discontinuous Galerkin methods (DG) for the acoustic vibration problem. Through all our study we consider an inviscid fluid, leading to a linear eigenvalue problem. The acoustic problem is written, in first place, in terms of the displacement. Under the approach of the non-compact operators theory, we prove convergence and error estimates for the method when the displacement formulation is considered. We analyze the influence of the stabilization parameter on the computation of the spectrum, where spurious eigenmodes arise when this parameter is not correctly chosen. Alternatively we present the formulation depending only on the pressure, comparing the performance of the DG methods with the pure displacement formulation. Computationally, we study the influence of the stabilization parameter on the arising of spurious eigenvalues when the spectrum is computed. Also, we report tests in two and three dimensions where convergence rates are reported, together with a comparison between the displacement and pressure formulations for the proposed DG methods.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Discontinuous Galerkin methods for the biharmonic problem
    Georgoulis, Emmanuil H.
    Houston, Paul
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (03) : 573 - 594
  • [2] Discontinuous Galerkin methods for solving the Signorini problem
    Wang, Fei
    Han, Weimin
    Cheng, Xiaoliang
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (04) : 1754 - 1772
  • [3] Discontinuous Galerkin Methods for Acoustic Wave Propagation in Polygons
    Fabian Müller
    Dominik Schötzau
    Christoph Schwab
    Journal of Scientific Computing, 2018, 77 : 1909 - 1935
  • [4] Discontinuous Galerkin Methods for Acoustic Wave Propagation in Polygons
    Mueller, Fabian
    Schotzau, Dominik
    Schwab, Christoph
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (03) : 1909 - 1935
  • [5] Discontinuous Galerkin methods for solving a quasistatic contact problem
    Fei Wang
    Weimin Han
    Xiaoliang Cheng
    Numerische Mathematik, 2014, 126 : 771 - 800
  • [6] Higher order discontinuous Galerkin method for acoustic pulse problem
    Wolkov, A. V.
    Petrovskaya, N. B.
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (07) : 1186 - 1194
  • [7] Discontinuous Galerkin methods for solving double obstacle problem
    Wang, Fei
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (02) : 706 - 720
  • [8] Discontinuous Galerkin Methods for Solving Two Membranes Problem
    Wang, Fei
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2013, 34 (02) : 220 - 235
  • [9] Discontinuous Galerkin methods for solving a quasistatic contact problem
    Wang, Fei
    Han, Weimin
    Cheng, Xiaoliang
    NUMERISCHE MATHEMATIK, 2014, 126 (04) : 771 - 800
  • [10] On discontinuous Galerkin methods
    Zienkiewicz, OC
    Taylor, RL
    Sherwin, SJ
    Peiró, J
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 58 (08) : 1119 - 1148