Remaining useful life prediction of bearings using multi-source adversarial online regression under online unknown conditions

被引:23
|
作者
Zhuang, Jichao [1 ]
Cao, Yudong [1 ]
Jia, Minping [1 ]
Zhao, Xiaoli [2 ]
Peng, Qingjin [3 ]
机构
[1] Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Peoples R China
[3] Univ Manitoba, Dept Mech Engn, Winnipeg, MB, Canada
基金
中国国家自然科学基金;
关键词
Remaining useful life; Online unknown condition; Online transfer learning; Rolling bearing; Multi-source adversarial domain; FAULT-DIAGNOSIS; NETWORK;
D O I
10.1016/j.eswa.2023.120276
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most transfer learning-based methods require sufficient data for training, but the target data may not be available. Also, the health prognosis of target data under unknown conditions is a challenging online few-shot issue, which is still not effectively addressed. In addition, the limited knowledge learned from a single source domain may further limit the extraction of degradation features. To address these challenges, a multi-source adversarial online regression (MAOR) method considering the pseudo domain extension is proposed to predict the remaining useful life of bearings under online unknown conditions. It can obtain a target data stream for each round and perform an online learning task. Specifically, when generating pseudo-domains, the domain-level adaptation is designed by considering the heterogeneous distribution between pseudo-domains and the simi-larity of manifold between pseudo and source domains. Also, the feature-level adaptation is embedded in a multi -source adversarial adaptation architecture to learn robust domain-invariant features and build the offline model. An offline-online prediction framework is developed to predict online target data streams and update the online model with adaptive weighting. To validate the superiority of the proposed MAOR, two bearing cases are extensively evaluated. The experiment results show that MAOR can achieve significant outcomes in different online tasks with competitive performance.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Remaining useful life prediction across machines using multi-source adversarial online knowledge distillation
    Liu, Keying
    Li, Yifan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 130
  • [2] Remaining useful life prediction of rotating equipment under multiple operating conditions via multi-source adversarial distillation domain adaptation
    Shang, Jie
    Xu, Danyang
    Li, Mingyu
    Qiu, Haobo
    Jiang, Chen
    Gao, Liang
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 256
  • [3] Self-Supervised Deep Domain-Adversarial Regression Adaptation for Online Remaining Useful Life Prediction of Rolling Bearing Under Unknown Working Condition
    Mao, Wentao
    Chen, Jiaxian
    Liu, Jing
    Liang, Xihui
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1227 - 1237
  • [4] Online Remaining Useful Lifetime Prediction Using Support Vector Regression
    Martinez, Antonio Leonel Hernandez
    Khursheed, Saqib
    Alnuayri, Turki
    Rossi, Daniele
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (03) : 1546 - 1557
  • [5] Prediction of the Remaining Useful Life of a Switch Machine, Based on Multi-Source Data
    Zheng, Yunshui
    Chen, Weimin
    Zhang, Yaning
    Bai, Dengyu
    SUSTAINABILITY, 2022, 14 (21)
  • [6] Remaining useful life prediction based on multi-source information fusion and HMM
    Huang L.
    Gong L.
    Jiang W.
    Wang K.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2022, 44 (05): : 1747 - 1756
  • [7] An online transfer learning-based remaining useful life prediction method of ball bearings
    Zeng, Fuchuan
    Li, Yiming
    Jiang, Yuhang
    Song, Guiqiu
    MEASUREMENT, 2021, 176
  • [8] Remaining Useful Life Prediction of Bearings Using Fuzzy Multimodal Extreme Learning Regression
    Li, Xuejiao
    2017 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2017, : 499 - 503
  • [9] Remaining useful life prediction of machinery based on performance evaluation and online cross-domain health indicator under unknown working conditions
    Pei, Xuewu
    Gao, Liang
    Li, Xinyu
    JOURNAL OF MANUFACTURING SYSTEMS, 2024, 75 : 213 - 227
  • [10] A Multi-source Data-driven Approach to IGBT Remaining Useful Life Prediction
    Hao, Xiaoyu
    Wang, Qiang
    Yang, Yahong
    Ma, Hongbo
    Wang, Xianzhi
    Chen, Gaige
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 733 - 737