Model-based Systems Engineering Efficiencies

被引:0
|
作者
Oh, Jane M. C. [1 ]
Fifield, Michael G. [1 ]
Scandore, Steve F. [1 ]
Trettel, Ian A. [1 ]
Donitz, Benjamin [1 ]
机构
[1] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
关键词
D O I
10.1109/AERO55745.2023.10115680
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
NASA, JPL, and other space agencies rely on ever larger, more complex software systems to do challenging science. This trend raises the stakes and drives the need for breakthrough solutions which reduce mission risk. At the Laboratory, the emergence of model-based design reformulates the design process, and therefore the nature of software systems engineering must change accordingly. For example, Mars Polar Lander is thought to have failed when the software turned off its engines too soon - the flaw in the software-system design was introduced when the software requirements were derived from the system requirements; had there been a software-system model, this flaw would have been easily detected with the Model-based approach we advocate. Model-based engineering is used on other missions, but in this paper, we will discuss 3 Mars missions (Mars Science Laboratory, Mars 2020, and Mars Sample Retrieval Lander). Model-based systems engineering promises to shift the way space mission designs are captured, reviewed, and elaborated from an emphasis on drawings and text-based documents to computer processable models. In practice, the Mars projects applied the following techniques to improve the efficiency of the iterative Mars project flight system design process through: Decomposition of the Flight System into Functional Designs, Abstractions of System Elements, System Block Diagram, Software Interface Block Diagram, Abstractions of Software System Elements, Software Sequence Diagram, Parameter Architecture Model, and JPL-developed Computer Aided Engineering for Spacecraft System Architectures Tool Suite (CAESAR). MBSE efficiency assessment using the comparison between the Actual and the Estimates shows that the MSL Flight Software (FSW) defect undetected rate is reduced from 21% to 12% (nearly 2-fold reduction) and Mars 2020 FSW defect undetected rate is reduced from 21% to 3% (7-fold reduction). To FSW, the biggest contribution, by far, is the effective reuse of code as `heritage' from MSL and the adoption of MBSE techniques mentioned above.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Model-Based Systems Engineering for Machine Tools and Production Systems (Model-Based Production Engineering)
    Kuebler, Karl
    Scheifele, Stefan
    Scheifele, Christian
    Riedel, Oliver
    4TH INTERNATIONAL CONFERENCE ON SYSTEM-INTEGRATED INTELLIGENCE: INTELLIGENT, FLEXIBLE AND CONNECTED SYSTEMS IN PRODUCTS AND PRODUCTION, 2018, 24 : 216 - 221
  • [2] Ontology for Systems Engineering Model-based Systems Engineering
    van Ruijven, Leo
    2012 Sixth UKSim/AMSS European Symposium on Computer Modelling and Simulation (EMS), 2012, : 371 - 376
  • [3] COMPREHENSIVE MODEL-BASED ENGINEERING FOR SYSTEMS OF SYSTEMS
    John, Fitzgerald (John.Fitzgerald@ncl.ac.uk), 1600, John Wiley and Sons Inc (19):
  • [4] Model-Based Systems Engineering Activities
    Griego, Regina
    Insight, 2008, 11 (04) : 45 - 46
  • [5] Reuse in Model-Based Systems Engineering
    Shani, Uri
    Broodney, Henry
    2015 9TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE (SYSCON), 2015, : 77 - 83
  • [6] Ontology and Model-based Systems Engineering
    van Ruijven, L. C.
    CONFERENCE ON SYSTEMS ENGINEERING RESEARCH, 2012, 8 : 194 - 200
  • [7] Foundations for model-based systems engineering and model-based safety assessment
    Rauzy, Antoine B.
    Haskins, Cecilia
    SYSTEMS ENGINEERING, 2019, 22 (02) : 146 - 155
  • [8] Model-Based Systems Engineering Uptake in Engineering Practice
    Cameron, Bruce
    Adsit, Daniel Mark
    IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, 2020, 67 (01) : 152 - 162
  • [9] Model-Based Systems Engineering Cybersecurity for Space Systems
    Kirshner, Mitchell
    AEROSPACE, 2023, 10 (02)
  • [10] A Model-Based Approach for Requirements Engineering for Systems of Systems
    Holt, Jon
    Perry, Simon
    Payne, Richard
    Bryans, Jeremy
    Hallerstede, Stefan
    Hansen, Finn Overgaard
    IEEE SYSTEMS JOURNAL, 2015, 9 (01): : 252 - 262