The Gradient Convergence Bound of Federated Multi-Agent Reinforcement Learning With Efficient Communication

被引:4
|
作者
Xu, Xing [1 ]
Li, Rongpeng [1 ]
Zhao, Zhifeng [2 ,3 ]
Zhang, Honggang [2 ,3 ]
机构
[1] Zhejiang Univ, Hangzhou 310027, Peoples R China
[2] Zhejiang Lab, Hangzhou 311121, Peoples R China
[3] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Independent reinforcement learning; federated learning; consensus algorithm; communication overheads;
D O I
10.1109/TWC.2023.3279268
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper considers independent reinforcement learning (IRL) for multi-agent collaborative decision-making in the paradigm of federated learning (FL). However, FL generates excessive communication overheads between agents and a remote central server, especially when it involves a large number of agents or iterations. Besides, due to the heterogeneity of independent learning environments, multiple agents may undergo asynchronous Markov decision processes (MDPs), which will affect the training samples and the model's convergence performance. On top of the variation-aware periodic averaging (VPA) method and the policy-based deep reinforcement learning (DRL) algorithm (i.e., proximal policy optimization (PPO)), this paper proposes two advanced optimization schemes orienting to stochastic gradient descent (SGD): 1) A decay-based scheme gradually decays the weights of a model's local gradients with the progress of successive local updates, and 2) By representing the agents as a graph, a consensus-based scheme studies the impact of exchanging a model's local gradients among nearby agents from an algebraic connectivity perspective. This paper also provides novel convergence guarantees for both developed schemes, and demonstrates their superior effectiveness and efficiency in improving the system's utility value through theoretical analyses and simulation results.
引用
收藏
页码:507 / 528
页数:22
相关论文
共 50 条
  • [1] Communication-Efficient and Federated Multi-Agent Reinforcement Learning
    Krouka, Mounssif
    Elgabli, Anis
    Ben Issaid, Chaouki
    Bennis, Mehdi
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2022, 8 (01) : 311 - 320
  • [2] FedQMIX: Communication-efficient federated learning via multi-agent reinforcement learning
    Cao, Shaohua
    Zhang, Hanqing
    Wen, Tian
    Zhao, Hongwei
    Zheng, Quancheng
    Zhang, Weishan
    Zheng, Danyang
    HIGH-CONFIDENCE COMPUTING, 2024, 4 (02):
  • [3] A Multi-Agent Reinforcement Learning Approach for Efficient Client Selection in Federated Learning
    Zhang, Sai Qian
    Lin, Jieyu
    Zhang, Qi
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 9091 - 9099
  • [4] Multi-Agent Reinforcement Learning With Distributed Targeted Multi-Agent Communication
    Xu, Chi
    Zhang, Hui
    Zhang, Ya
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2915 - 2920
  • [5] Provably Efficient Multi-Agent Reinforcement Learning with Fully Decentralized Communication
    Lidard, Justin
    Madhushani, Udari
    Leonard, Naomi Ehrich
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3311 - 3316
  • [6] Learning structured communication for multi-agent reinforcement learning
    Sheng, Junjie
    Wang, Xiangfeng
    Jin, Bo
    Yan, Junchi
    Li, Wenhao
    Chang, Tsung-Hui
    Wang, Jun
    Zha, Hongyuan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2022, 36 (02)
  • [7] Learning structured communication for multi-agent reinforcement learning
    Junjie Sheng
    Xiangfeng Wang
    Bo Jin
    Junchi Yan
    Wenhao Li
    Tsung-Hui Chang
    Jun Wang
    Hongyuan Zha
    Autonomous Agents and Multi-Agent Systems, 2022, 36
  • [8] Shaping multi-agent systems with gradient reinforcement learning
    Olivier Buffet
    Alain Dutech
    François Charpillet
    Autonomous Agents and Multi-Agent Systems, 2007, 15 : 197 - 220
  • [9] Shaping multi-agent systems with gradient reinforcement learning
    Buffet, Olivier
    Dutech, Alain
    Charpillet, Francois
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2007, 15 (02) : 197 - 220
  • [10] Efficient Communication in Multi-Agent Reinforcement Learning via Variance Based Control
    Zhang, Sai Qian
    Zhang, Qi
    Lin, Jieyu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32