High-Order Mixed Finite Element Variable Eddington Factor Methods

被引:0
|
作者
Olivier, Samuel [1 ,2 ]
Haut, Terry S. [3 ]
机构
[1] Univ Calif Berkeley, Appl Sci & Technol, Berkeley, CA USA
[2] Alamos Natl Lab, Los Alamos, NM 87544 USA
[3] Lawrence Livermore Natl Lab, Livermore, CA USA
关键词
Radiation transport; variable Eddington factor; Quasidiffusion; high-order finite elements; preconditioned iterative solvers; S-N EQUATIONS; DISCONTINUOUS GALERKIN; SOLVER;
D O I
10.1080/23324309.2023.2200308
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply high-order mixed finite element discretization techniques and their associated preconditioned iterative solvers to the Variable Eddington Factor (VEF) equations in two spatial dimensions. The mixed finite element VEF discretizations are coupled to a high-order Discontinuous Galerkin (DG) discretization of the discrete ordinates transport equation to form effective linear transport algorithms that are compatible with high-order (curved) meshes. This combination of VEF and transport discretizations is motivated by the use of high-order mixed finite element methods in hydrodynamics calculations at the Lawrence Livermore National Laboratory (LLNL). Due to the mathematical structure of the VEF equations, the standard Raviart Thomas (RT) mixed finite elements cannot be used to approximate the vector variable in the VEF equations. Instead, we investigate three alternatives based on the use of continuous finite elements for each vector component, a non-conforming RT approach where DG-like techniques are used, and a hybridized RT method. We present numerical results that demonstrate high-order accuracy, compatibility with curved meshes, and robust and efficient convergence in iteratively solving the coupled transport-VEF system and in the preconditioned linear solvers used to invert the discretized VEF equations.
引用
收藏
页码:79 / 142
页数:64
相关论文
共 50 条
  • [1] On high-order conservative finite element methods
    Abreu, Eduardo
    Diaz, Ciro
    Galvis, Juan
    Sarkis, Marcus
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (06) : 1852 - 1867
  • [2] High-order finite element methods for acoustic problems
    Harari, I
    Avraham, D
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 1997, 5 (01) : 33 - 51
  • [3] Superconvergence in high-order Galerkin finite element methods
    Qun, Lin
    Junming, Zhou
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (37-40) : 3779 - 3784
  • [4] Implementing and using high-order finite element methods
    Bagheri, Babak
    Ridgway Scott, L.
    Zhang, Shangyou
    Finite elements in analysis and design, 1994, 16 (3-4) : 175 - 189
  • [5] Deep ReLU networks and high-order finite element methods
    Opschoor, Joost A. A.
    Petersen, Philipp C.
    Schwab, Christoph
    ANALYSIS AND APPLICATIONS, 2020, 18 (05) : 715 - 770
  • [6] High-order finite element methods for parallel atmospheric modeling
    St Cyr, A
    Thomas, SJ
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 1, PROCEEDINGS, 2005, 3514 : 256 - 262
  • [7] HIGH-ORDER CURVILINEAR FINITE ELEMENT METHODS FOR LAGRANGIAN HYDRODYNAMICS
    Dobrev, Veselin A.
    Kolev, Tzanio V.
    Rieben, Robert N.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (05): : B606 - B641
  • [8] Use of discontinuity factors in high-order finite element methods
    Vidal-Ferrandiz, A.
    Gonzalez-Pintor, S.
    Ginestar, D.
    Verdu, G.
    Asadzadeh, M.
    Demaziere, C.
    ANNALS OF NUCLEAR ENERGY, 2016, 87 : 728 - 738
  • [9] Efficient exascale discretizations: High-order finite element methods
    Kolev, Tzanio
    Fischer, Paul
    Min, Misun
    Dongarra, Jack
    Brown, Jed
    Dobrev, Veselin
    Warburton, Tim
    Tomov, Stanimire
    Shephard, Mark S.
    Abdelfattah, Ahmad
    Barra, Valeria
    Beams, Natalie
    Camier, Jean-Sylvain
    Chalmers, Noel
    Dudouit, Yohann
    Karakus, Ali
    Karlin, Ian
    Kerkemeier, Stefan
    Lan, Yu-Hsiang
    Medina, David
    Merzari, Elia
    Obabko, Aleksandr
    Pazner, Will
    Rathnayake, Thilina
    Smith, Cameron W.
    Spies, Lukas
    Swirydowicz, Kasia
    Thompson, Jeremy
    Tomboulides, Ananias
    Tomov, Vladimir
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2021, 35 (06): : 527 - 552
  • [10] Piecewise bilinear preconditioning of high-order finite element methods
    Kim, Sang Dong
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2007, 26 : 228 - 242