Machine learning and ontology in eCoaching for personalized activity level monitoring and recommendation generation (vol 13, 2954, 2023)

被引:1
|
作者
Chatterjee, Ayan
Pahari, Nibedita
Prinz, Andreas
Riegler, Michael
机构
[1] University of Agder,Department of Information and Communication Technology, Centre for e
[2] Simula Metropolitan Center for Digital Engineering (SimulaMet),Health
[3] Tietoevry Norway AS,Department of Holistic Systems
关键词
D O I
10.1038/s41598-023-30029-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页数:1
相关论文
共 35 条
  • [1] Machine learning and ontology in eCoaching for personalized activity level monitoring and recommendation generation
    Chatterjee, Ayan
    Pahari, Nibedita
    Prinz, Andreas
    Riegler, Michael
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Machine learning and ontology in eCoaching for personalized activity level monitoring and recommendation generation
    Ayan Chatterjee
    Nibedita Pahari
    Andreas Prinz
    Michael Riegler
    Scientific Reports, 12
  • [3] Author Correction: Machine learning and ontology in eCoaching for personalized activity level monitoring and recommendation generation
    Ayan Chatterjee
    Nibedita Pahari
    Andreas Prinz
    Michael Riegler
    Scientific Reports, 13
  • [4] An automatic and personalized recommendation modelling in activity eCoaching with deep learning and ontology
    Ayan Chatterjee
    Andreas Prinz
    Michael Alexander Riegler
    Yogesh Kumar Meena
    Scientific Reports, 13
  • [5] An automatic and personalized recommendation modelling in activity eCoaching with deep learning and ontology
    Chatterjee, Ayan
    Prinz, Andreas
    Riegler, Michael Alexander
    Meena, Yogesh Kumar
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [6] LSTM Step Prediction and Ontology-Based Recommendation Generation in Activity eCoaching
    Chatterjee, Ayan
    Pahari, Nibedita
    Riegler, Michael
    Prinz, Andreas
    2022 18TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS (WIMOB), 2022,
  • [7] Application of statistical machine learning in biomarker selection (vol 13, 18331, 2023)
    Vashistha, Ritwik
    Noor, Zubdahe
    Dasgupta, Shibasish
    Pu, Jie
    Deng, Shibing
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [8] Machine learning for predicting survival of colorectal cancer patients (vol 13, 8874, 2023)
    Cardoso, Lucas Buk
    Parro, Vanderlei Cunha
    Peres, Stela Verzinhasse
    Curado, Maria Paula
    Fernandes, Gisele Aparecida
    Filho, Victor Wuensch
    Toporcov, Tatiana Natasha
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [9] Comparing storm resolving models and climates via unsupervised machine learning (vol 13, 22365, 2023)
    Mooers, Griffin
    Pritchard, Mike
    Beucler, Tom
    Srivastava, Prakhar
    Mangipudi, Harshini
    Peng, Liran
    Gentine, Pierre
    Mandt, Stephan
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [10] Hierarchical automated machine learning (AutoML) for advanced unconventional reservoir characterization (vol 13, 13812, 2023)
    Mubarak, Yousef
    Koeshidayatullah, Ardiansyah
    SCIENTIFIC REPORTS, 2023, 13 (01):