Generative Relevance Feedback with Large Language Models

被引:11
|
作者
Mackie, Iain [1 ]
Chatterjee, Shubham [1 ]
Dalton, Jeffrey [1 ]
机构
[1] Univ Glasgow, Glasgow, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Pseudo-Relevance Feedback; Text Generation; Document Retrieval;
D O I
10.1145/3539618.3591992
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current query expansion models use pseudo-relevance feedback to improve first-pass retrieval effectiveness; however, this fails when the initial results are not relevant. Instead of building a language model from retrieved results, we propose Generative Relevance Feedback (GRF) that builds probabilistic feedback models from long-form text generated from Large Language Models. We study the effective methods for generating text by varying the zero-shot generation subtasks: queries, entities, facts, news articles, documents, and essays. We evaluate GRF on document retrieval benchmarks covering a diverse set of queries and document collections, and the results show that GRF methods significantly outperform previous PRF methods. Specifically, we improve MAP between 5-19% and nDCG@10 17-24% compared to RM3 expansion, and achieve state-of-the-art recall across all datasets.
引用
收藏
页码:2026 / 2031
页数:6
相关论文
共 50 条
  • [1] Generative Large Language Models Explained
    Yan, Xueming
    Xiao, Yan
    Jin, Yaochu
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2024, 19 (04) : 45 - 46
  • [2] Foundation Models, Generative AI, and Large Language Models
    Ross, Angela
    McGrow, Kathleen
    Zhi, Degui
    Rasmy, Laila
    CIN-COMPUTERS INFORMATICS NURSING, 2024, 42 (05) : 377 - 387
  • [3] FinGPT: Large Generative Models for a Small Language
    Luukkonen, Risto
    Komulainen, Ville
    Luoma, Jouni
    Eskelinen, Anni
    Kanerva, Jenna
    Kupari, Hanna-Mari
    Ginter, Filip
    Laippala, Veronika
    Muennighoff, Niklas
    Piktus, Aleksandra
    Wang, Thomas
    Tazi, Nouamane
    Le Scao, Teven
    Wolf, Thomas
    Suominen, Osma
    Sairanen, Samuli
    Merioksa, Mikko
    Heinonen, Jyrki
    Vahtola, Aija
    Ffi, Samuel Antao
    Pyysalo, Sampo
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2023, 2023, : 2710 - 2726
  • [4] Journal policy on large language generative models
    Sessler, Daniel I.
    Turan, Alparslan
    JOURNAL OF CLINICAL ANESTHESIA, 2024, 96
  • [5] Open Generative Large Language Models for Galician
    Gamallo, Pablo
    Rodriguez, Pablo
    de-Dios-Flores, Iria
    Sotelo, Susana
    Paniagua, Silvia
    Bardanca, Daniel
    Ramom Pichel, Jose
    Garcia, Marcos
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2024, (73): : 259 - 270
  • [6] Perspectives on Large Language Models for Relevance Judgment
    Faggioli, Guglielmo
    Dietz, Laura
    Clarke, Charles L. A.
    Demartini, Gianluca
    Hagen, Matthias
    Hauff, Claudia
    Kando, Noriko
    Kanoulas, Evangelos
    Potthast, Martin
    Stein, Benno
    Wachsmuth, Henning
    PROCEEDINGS OF THE 2023 ACM SIGIR INTERNATIONAL CONFERENCE ON THE THEORY OF INFORMATION RETRIEVAL, ICTIR 2023, 2023, : 39 - 50
  • [7] The Relevance of Large Language Models for Project Management
    Karnouskos, Stamatis
    IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY, 2024, 5 : 758 - 768
  • [8] Large Language Models and Generative AI, Oh My!
    Zyda, Michael
    COMPUTER, 2024, 57 (03) : 127 - 132
  • [9] Large language models for generative information extraction: a survey
    Xu, Derong
    Chen, Wei
    Peng, Wenjun
    Zhang, Chao
    Xu, Tong
    Zhao, Xiangyu
    Wu, Xian
    Zheng, Yefeng
    Wang, Yang
    Chen, Enhong
    FRONTIERS OF COMPUTER SCIENCE, 2024, 18 (06)
  • [10] Large Language Models and Generative AI, Oh My!
    Cobb, Peter J.
    ADVANCES IN ARCHAEOLOGICAL PRACTICE, 2023, 11 (03): : 363 - 369