An Unsupervised CNN-Based Multichannel Interferometric Phase Denoising Method Applied to TomoSAR Imaging

被引:7
|
作者
Li, Jie [1 ,2 ,3 ]
Xu, Zhongqiu [1 ,2 ,3 ]
Li, Zhiyuan [1 ,2 ,3 ]
Zhang, Zhe [4 ,5 ]
Zhang, Bingchen [4 ]
Wu, Yirong [4 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Chinese Acad Sci, Key Lab Technol Geospatial Informat Proc & Applica, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 101408, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[5] Suzhou Aerosp Informat Res Inst, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase noise; Synthetic aperture radar; Noise reduction; Training; Standards; Tomography; Image reconstruction; Convolution neural network (CNN); interfeometric phase; SAR; tomographic synthetic aperture radar (TomoSAR); NOISE-REDUCTION; SAR TOMOGRAPHY; RADAR;
D O I
10.1109/JSTARS.2023.3263964
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Tomographic synthetic aperture radar (TomoSAR) is an advanced SAR interferometric technique to retrieve 3-D spatial information. However, the standard deviation in the reconstructed elevation could be high due to the noise in the interferometric phases, which makes the denoising filter crucial before tomographic reconstruction. In this article, we propose an unsupervised multichannel SAR interferometric phase denoising method based on the convolution neural network. It utilizes the weighted least-squares (WLS) regularization combining with the covariance of multichannel interferometric phases to minimize the standard deviation of phase noise, which leads to the accurate and complete TomoSAR reconstruction. This network is trained by real SAR images and the results of both simulated and real observations verify the effectiveness of our proposed method.
引用
收藏
页码:3784 / 3796
页数:13
相关论文
共 50 条
  • [1] A CNN-BASED MULTICHANNEL INTERFEROMETRIC PHASE DENOISING METHOD APPLIED TO TOMOSAR IMAGING
    Li, Jie
    Xu, Zhongqiu
    Li, Zhiyuan
    Zhang, Bingchen
    Wu, Yirong
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3448 - 3451
  • [2] AN UNSUPERVISED CNN-BASED HYPERSPECTRAL PANSHARPENING METHOD
    Guarino, G.
    Ciotola, M.
    Vivone, G.
    Poggi, G.
    Scarpa, G.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5982 - 5985
  • [3] A CNN-Based Blind Denoising Method for Endoscopic Images
    Zou, Shaofeng
    Long, Mingzhu
    Wang, Xuyang
    Xie, Xiang
    Li, Guolin
    Wang, Zhihua
    2019 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS 2019), 2019,
  • [4] CNN-based InSAR Denoising and Coherence Metric
    Mukherjee, Subhayan
    Zimmer, Aaron
    Kottayil, Navaneeth Kamballur
    Sun, Xinyao
    Ghuman, Parwant
    Cheng, Irene
    2018 IEEE SENSORS, 2018, : 808 - 811
  • [5] Research on CNN-Based Image Denoising Methods
    Liu, Wei
    Zhang, Chao
    Tai, Yonghang
    ADVANCED INTELLIGENT TECHNOLOGIES FOR INDUSTRY, 2022, 285 : 475 - 481
  • [6] Unsupervised Feature Extraction - A CNN-Based Approach
    Trosten, Daniel J.
    Sharma, Puneet
    IMAGE ANALYSIS, 2019, 11482 : 197 - 208
  • [7] Unsupervised CNN-based DIC method for 2D displacement measurement
    Wang, Yixiao
    Zhou, Canlin
    OPTICS AND LASERS IN ENGINEERING, 2024, 174
  • [8] CNN-based denoising system for the image quality enhancement
    Satrughan Kumar
    Yashwant Kurmi
    Multimedia Tools and Applications, 2022, 81 : 20147 - 20174
  • [9] CNN-based Image Denoising for Outdoor Active Stereo
    Qu, Chengchao
    Moiseikin, Maksim
    Voth, Sascha
    Beyerer, Juergen
    PROCEEDINGS OF MVA 2019 16TH INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS (MVA), 2019,
  • [10] CNN-based denoising system for the image quality enhancement
    Kumar, Satrughan
    Kurmi, Yashwant
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (14) : 20147 - 20174