A study of binomial AR(1) process with an alternative generalized binomial thinning operator

被引:7
|
作者
Zhang, Jie [1 ]
Wang, Jiacong [1 ]
Tai, Zhiyan [1 ]
Dong, Xiaogang [1 ]
机构
[1] Changchun Univ Technol, Sch Math & Stat, Changchun 130000, Peoples R China
基金
中国国家自然科学基金;
关键词
Binomial AR(1) processes; Dependent counting series; Alternative dependent thinning operator; Parameter estimation; RANGE TIME-SERIES; COUNT DATA; MODEL;
D O I
10.1007/s42952-022-00193-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In order to describe the finite-range integer-valued time series data with dependent structure and excess zeros, we introduce a new binomial AR(1) process with an alternative generalized binomial thinning operator. Some probabilistic and statistical properties of this model are derived. Model parameters are estimated by conditional least squares method and conditional maximum likelihood method. The consistency and asymptotic normality of these estimators are studied. In addition, a real data analysis shows a better performance of the proposed model than other existing models.
引用
收藏
页码:110 / 129
页数:20
相关论文
共 50 条
  • [1] A study of binomial AR(1) process with an alternative generalized binomial thinning operator
    Jie Zhang
    Jiacong Wang
    Zhiyan Tai
    Xiaogang Dong
    Journal of the Korean Statistical Society, 2023, 52 : 110 - 129
  • [2] Extended binomial AR(1) processes with generalized binomial thinning operator
    Kang, Yao
    Wang, Dehui
    Yang, Kai
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (14) : 3498 - 3520
  • [3] A seasonal geometric INAR process based on negative binomial thinning operator
    Tian, Shengqi
    Wang, Dehui
    Cui, Shuai
    STATISTICAL PAPERS, 2020, 61 (06) : 2561 - 2581
  • [4] A seasonal geometric INAR process based on negative binomial thinning operator
    Shengqi Tian
    Dehui Wang
    Shuai Cui
    Statistical Papers, 2020, 61 : 2561 - 2581
  • [5] A study of RCINAR(1) process with generalized negative binomial marginals
    Zhang, Jie
    Wang, Dehui
    Yang, Kai
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (06) : 1487 - 1510
  • [6] Correction to: A seasonal geometric INAR process based on negative binomial thinning operator
    Shengqi Tian
    Dehui Wang
    Shuai Cui
    Statistical Papers, 2019, 60 : 1421 - 1421
  • [7] Generalized binomial states: Ladder operator approach
    Fu, HC
    Sasaki, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (17): : 5637 - 5644
  • [8] A seasonal geometric INAR process based on negative binomial thinning operator (vol 60, pg 1, 2019)
    Tian, Shengqi
    Wang, Dehui
    Cui, Shuai
    STATISTICAL PAPERS, 2019, 60 (04) : 1421 - 1421
  • [9] A negative binomial thinning-based bivariate INAR(1) process
    Zhang, Qingchun
    Wang, Dehui
    Fan, Xiaodong
    STATISTICA NEERLANDICA, 2020, 74 (04) : 517 - 537
  • [10] Generalized fractional negative binomial process
    Soni, Ritik
    Pathak, Ashok Kumar
    STATISTICS & PROBABILITY LETTERS, 2024, 207