Metaverse Driven Edge-fogging-cloud Network for Complex Human Activity Recognition using Sensors Fusion

被引:0
|
作者
Fan, Haoyu [1 ]
Gao, Jirun [1 ]
Xu, Yancai [2 ]
Fortino, Giancarlo [3 ]
Qi, Wen [1 ]
机构
[1] South China Univ Technol, Sch Future Technol, Guangzhou, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
[3] Univ Calabria, Dept Informat Modeling Elect & Syst, Arcavacata Di Rende, Italy
来源
2023 INTERNATIONAL CONFERENCE ON INTELLIGENT METAVERSE TECHNOLOGIES & APPLICATIONS, IMETA | 2023年
关键词
Metaverse; Digital twin; HAR; Edge-fog-cloud; network; Kafka;
D O I
10.1109/iMETA59369.2023.10294545
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Metaverse and digital twins are promising for applications in people-centered domains, such as smart cities and telemedicine. Meanwhile, combining the technologies with human activity recognition (HAR) can substantially improve identification accuracy and computational efficiency. Besides, using an edge-fog-cloud network architecture for data transmission offers advantages regarding storage space and computational resources on edge devices, thereby enhancing analysis efficiency. We present a novel HAR system that leverages the edge-fog-cloud network architecture, which achieves three key functionalities. First, the system integrates data from multimodal sensors to address the computational challenges and data transmission latency associated with complex HAR tasks. Second, the Kafka network architecture and the concept of digital twins ensure secure and timely transmission within the system. Third, the system employs hierarchical algorithm models to enhance HAR prediction accuracy while reducing computational time at each layer.
引用
收藏
页码:105 / 110
页数:6
相关论文
共 50 条
  • [1] An Efficient Hierarchical Multiscale and Multidimensional Feature Adaptive Fusion Network for Human Activity Recognition Using Wearable Sensors
    Li, Xinya
    Xu, Hongji
    Wang, Yang
    Zeng, Jiaqi
    Li, Yiran
    Li, Xiaoman
    Ai, Wentao
    Zheng, Hao
    Duan, Yupeng
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (06): : 6492 - 6505
  • [2] A Multiscale Cross-Modal Interactive Fusion Network for Human Activity Recognition Using Wearable Sensors and Smartphones
    Yang, Xin
    Xu, Zeju
    Liu, Haodong
    Shull, Peter B.
    Redmond, Stephen
    Liu, Guanzheng
    Wang, Changhong
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (16): : 27139 - 27152
  • [3] Personalized human activity recognition using deep learning and edge-cloud architecture
    Luay Alawneh
    Mahmoud Al-Ayyoub
    Ziad A. Al-Sharif
    Ahmed Shatnawi
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 12021 - 12033
  • [4] Personalized human activity recognition using deep learning and edge-cloud architecture
    Alawneh, Luay
    Al-Ayyoub, Mahmoud
    Al-Sharif, Ziad A.
    Shatnawi, Ahmed
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 14 (9) : 12021 - 12033
  • [5] Human Activity Recognition Using Smartphone Sensors
    Bugdol, Marcin D.
    Mitas, Andrzej W.
    Grzegorzek, Marcin
    Meyer, Robert
    Wilhelm, Christoph
    INFORMATION TECHNOLOGIES IN MEDICINE (ITIB 2016), VOL 2, 2016, 472 : 41 - 47
  • [6] Complex Human Activity Recognition Based on Spatial LSTM and Deep Residual Convolutional Network Using Wearable Motion Sensors
    Tian, Ye
    Hettiarachchi, Dulmini
    Yu, Han
    Kamijo, Shunsuke
    IEEE SENSORS JOURNAL, 2024, 24 (14) : 23183 - 23196
  • [7] EdgeActNet: Edge Intelligence-Enabled Human Activity Recognition Using Radar Point Cloud
    Luo, Fei
    Khan, Salabat
    Li, Anna
    Huang, Yandao
    Wu, Kaishun
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (05) : 5479 - 5493
  • [8] Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors
    Shoaib, Muhammad
    Bosch, Stephan
    Incel, Ozlem Durmaz
    Scholten, Hans
    Havinga, Paul J. M.
    SENSORS, 2016, 16 (04)
  • [9] Edge-Cloud Collaboration for Human Activity Recognition on Multiple Subjects
    Xiao, Wenjing
    Xie, Lei
    Ning, Jingyi
    Fu, Ziyu
    Zhao, Ming
    Lin, Zhenjie
    Lin, Qiang
    2022 IEEE 23RD INTERNATIONAL SYMPOSIUM ON A WORLD OF WIRELESS, MOBILE AND MULTIMEDIA NETWORKS (WOWMOM 2022), 2022, : 80 - 89
  • [10] Merging-Squeeze-Excitation Feature Fusion for Human Activity Recognition Using Wearable Sensors
    Laitrakun, Seksan
    APPLIED SCIENCES-BASEL, 2023, 13 (04):