Short-Term Wind Power Prediction by an Extreme Learning Machine Based on an Improved Hunter-Prey Optimization Algorithm

被引:15
|
作者
Wang, Xiangyue [1 ]
Li, Ji [2 ]
Shao, Lei [2 ]
Liu, Hongli [2 ]
Ren, Lei [2 ]
Zhu, Lihua [2 ]
机构
[1] Tianjin Univ Technol, Sch Elect Engn & Automation, Tianjin 300384, Peoples R China
[2] Tianjin Key Lab Control Theory & Applicat Complica, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
partial least squares' variable importance of projection; normalized mutual information; hunter-prey optimization algorithm; extreme learning machine; wind power prediction; MODEL;
D O I
10.3390/su15020991
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Considering the volatility and randomness of wind speed, this research suggests an improved hunter-prey optimization (IHPO) algorithm-based extreme learning machine (ELM) short-term wind power prediction model to increase short-term wind power prediction accuracy. The original wind power history data from the wind farm are used in the model to achieve feature extraction and data dimensionality reduction, using the partial least squares' variable importance of projection (PLS-VIP) and normalized mutual information (NMI) methods. Adaptive inertia weights are added to the HPO algorithm's optimization search process to speed up the algorithm's convergence. At the same time, the initialized population is modified, to improve the algorithm's ability to perform global searches. To accomplish accurate wind power prediction, the enhanced algorithm's optimal parameters optimize the extreme learning machine's weights and threshold. The findings demonstrate that the method accurately predicts wind output and can be confirmed using measured data from a wind turbine in Inner Mongolia, China.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Short-Term Wind Power Prediction Based on Improved Grey Wolf Optimization Algorithm for Extreme Learning Machine
    Ding, Jiale
    Chen, Guochu
    Yuan, Kuo
    PROCESSES, 2020, 8 (01)
  • [2] Short-Term Photovoltaic Power Prediction Based on Extreme Learning Machine with Improved Dung Beetle Optimization Algorithm
    Zhang, Yuhao
    Li, Ting
    Ma, Tianyi
    Yang, Dongsheng
    Sun, Xiaolong
    ENERGIES, 2024, 17 (04)
  • [3] Short-Term Wind Power Prediction Based on Data Reconstruction and Improved Extreme Learning Machine
    Li, Haobo
    Zou, Hairong
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (03) : 3669 - 3682
  • [4] Short-Term Wind Power Prediction Based on Data Reconstruction and Improved Extreme Learning Machine
    Haobo Li
    Hairong Zou
    Arabian Journal for Science and Engineering, 2022, 47 : 3669 - 3682
  • [5] Improved extreme learning machine with AutoEncoder and particle swarm optimization for short-term wind power prediction
    El Bourakadi, Dounia
    Yahyaouy, Ali
    Boumhidi, Jaouad
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (06): : 4643 - 4659
  • [6] Improved extreme learning machine with AutoEncoder and particle swarm optimization for short-term wind power prediction
    Dounia El Bourakadi
    Ali Yahyaouy
    Jaouad Boumhidi
    Neural Computing and Applications, 2022, 34 : 4643 - 4659
  • [7] Short-term Wind Power Prediction Based on Empirical Mode Decomposition and Improved Extreme Learning Machine
    Tian, Zhongda
    Ren, Yi
    Wang, Gang
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2018, 13 (05) : 1841 - 1851
  • [8] Short-Term Wind Power Prediction Based on Improved Chicken Algorithm Optimization Support Vector Machine
    Fu, Chao
    Li, Guo-Quan
    Lin, Kuo-Ping
    Zhang, Hui-Juan
    SUSTAINABILITY, 2019, 11 (02)
  • [9] Short-term wind power prediction based on extreme learning machine with error correction
    Li, Zhi
    Ye, Lin
    Zhao, Yongning
    Song, Xuri
    Teng, Jingzhu
    Jin, Jingxin
    PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, 2016, 1 (01)
  • [10] Short-term wind power prediction based on extreme learning machine with error correction
    Zhi Li
    Lin Ye
    Yongning Zhao
    Xuri Song
    Jingzhu Teng
    Jingxin Jin
    Protection and Control of Modern Power Systems, 2016, 1 (1)