An improved large-scale sparse multi-objective evolutionary algorithm using unsupervised neural network

被引:6
|
作者
Geng, Huantong [1 ]
Shen, Junye [1 ]
Zhou, Zhengli [1 ]
Xu, Ke [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Large-scale sparse multi-objective optimization problems; Evolutionary algorithm; Dimensionality reduction; Restricted Boltzmann machine (RBM); OPTIMIZATION;
D O I
10.1007/s10489-022-04037-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Large-scale sparse multi-objective optimization problems (LSSMOPs) widely exist in the real world, such as portfolio optimization, neural network training problems, and so on. In recent years, a number of multi-objective optimization evolutionary algorithms (MOEAs) have been proposed to deal with LSSMOPs. To improve the search efficiency of the operator, using unsupervised neural networks to reduce the search space is one of the dimensionality reduction methods in sparse MOEAs. However, it is not efficient enough that existing algorithms using neural networks consume much time to train networks in each evolutionary generation. In addition, most sparse MOEAs ignore the relationship between binary vectors and real vectors, which determine the decision variables. Thus, this paper proposes an evolutionary algorithm for solving LSSMOPs. The proposed algorithm adopts an adaptive dimensionality reduction method to achieve a balance between convergence and efficiency. The algorithm groups the binary vectors and adaptively uses a restricted Boltzmann machine to reduce the search space of binary vectors. Then, the generation of real vectors is guided by binary vectors, which enhance the relationship between both parts of the decision variables. According to the experimental results on eight benchmark problems and neural network training problems, the proposed algorithm achieves better performance than existing state-of-the-art evolutionary algorithms for LSSMOPs.
引用
收藏
页码:10290 / 10309
页数:20
相关论文
共 50 条
  • [1] An improved large-scale sparse multi-objective evolutionary algorithm using unsupervised neural network
    Huantong Geng
    Junye Shen
    Zhengli Zhou
    Ke Xu
    Applied Intelligence, 2023, 53 : 10290 - 10309
  • [2] A sparse large-scale multi-objective evolutionary algorithm based on sparsity detection
    Yang, Wanting
    Liu, Jianchang
    Liu, Yuanchao
    Zheng, Tianzi
    SWARM AND EVOLUTIONARY COMPUTATION, 2025, 92
  • [3] An adaptive fitness evolutionary algorithm for sparse large-scale multi-objective optimization problems
    Zhang, Ge
    Wu, Ni
    Shen, Chaonan
    Zhang, Kai
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 473 - 479
  • [4] A multi-granularity clustering based evolutionary algorithm for large-scale sparse multi-objective optimization
    Tian, Ye
    Shao, Shuai
    Xie, Guohui
    Zhang, Xingyi
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 84
  • [5] A two-stage multi-objective evolutionary algorithm for large-scale multi-objective optimization
    Liu, Wei
    Chen, Li
    Hao, Xingxing
    Xie, Fei
    Nan, Haiyang
    Zhai, Honghao
    Yang, Jiyao
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [6] Improved SparseEA for sparse large-scale multi-objective optimization problems
    Yajie Zhang
    Ye Tian
    Xingyi Zhang
    Complex & Intelligent Systems, 2023, 9 : 1127 - 1142
  • [7] Improved SparseEA for sparse large-scale multi-objective optimization problems
    Zhang, Yajie
    Tian, Ye
    Zhang, Xingyi
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (02) : 1127 - 1142
  • [8] A co-evolutionary algorithm based on sparsity clustering for sparse large-scale multi-objective optimization
    Zhang, Yajie
    Wu, Chengming
    Tian, Ye
    Zhang, Xingyi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [9] An evolutionary algorithm based on rank-1 approximation for sparse large-scale multi-objective problems
    Chen, Xiyue
    Pan, Jing
    Li, Bin
    Wang, Qingzhu
    SOFT COMPUTING, 2023, 27 (21) : 15853 - 15871
  • [10] Fast Evolutionary Algorithm for Solving Large-Scale Multi-objective Problems
    Leonteva, Anna Ouskova
    Parrend, Pierre
    Jeannin-Girardon, Anne
    Collet, Pierre
    ARTIFICIAL EVOLUTION, EA 2019, 2020, 12052 : 82 - 95