Data-Driven Clustering and Bernoulli Merging for the Poisson Multi-Bernoulli Mixture Filter

被引:5
|
作者
Fontana, Marco [1 ]
Garcia-Fernandez, Angel F. [1 ,2 ]
Maskell, Simon [1 ]
机构
[1] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, England
[2] Univ Antonio de Nebrija, ARIES Res Ctr, Madrid 28015, Spain
关键词
Target tracking; Merging; Clustering algorithms; Time measurement; Density measurement; Minimization; Bayes methods; Bayesian estimation; multitarget tracking (MTT); Poisson multi-Bernoulli mixtures (PMBM); random finite sets (RFS); MULTITARGET TRACKING; ALGORITHM; DERIVATION; EFFICIENT; ASSOCIATION;
D O I
10.1109/TAES.2023.3253662
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This article proposes a clustering and merging approach for the Poisson multi-Bernoulli mixture (PMBM) filter to lower its computational complexity and make it suitable for multiple target tracking with a high number of targets. We define a measurement-driven clustering algorithm to reduce the data association problem into several subproblems, and we provide the derivation of the resulting clustered PMBM posterior density via Kullback-Leibler divergence minimization. Furthermore, we investigate different strategies to reduce the number of single target hypotheses by approximating the posterior via merging and intertrack swapping of Bernoulli components. We evaluate the performance of the proposed algorithm on simulated tracking scenarios with more than 1000 targets.
引用
收藏
页码:5287 / 5301
页数:15
相关论文
共 50 条
  • [1] Bernoulli merging for the Poisson multi-Bernoulli mixture filter
    Fontana, Marco
    Garcia-Fernandez, Angel F.
    Maskell, Simon
    PROCEEDINGS OF 2020 23RD INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2020), 2020, : 262 - 269
  • [2] Multiscan implementation of the trajectory poisson multi-Bernoulli mixture filter
    Xia, Yuxuan
    Granström, Karl
    Svensson, Lennart
    García-Fernández, Ángel F.
    Williams, Jason L.
    Journal of Advances in Information Fusion, 2019, 14 (02): : 213 - 235
  • [3] Poisson Multi-Bernoulli Mixture Filter: Direct Derivation and Implementation
    Garcia-Fernandez, Angel F.
    Williams, Jason L.
    Granstrom, Karl
    Svensson, Lennart
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2018, 54 (04) : 1883 - 1901
  • [4] A Partitioned Poisson Multi-Bernoulli Filter
    Su, Zhenzhen
    Tian, Cong
    Ji, Hongbing
    Zhang, Yongquan
    IEEE SENSORS JOURNAL, 2023, 23 (14) : 16002 - 16012
  • [5] Extended Target Marginal Distribution Poisson Multi-Bernoulli Mixture Filter
    Du, Haocui
    Xie, Weixin
    SENSORS, 2020, 20 (18) : 1 - 15
  • [6] A Poisson Multi-Bernoulli Mixture Filter for Coexisting Point and Extended Targets
    Garcia-Fernandez, Angel
    Williams, Jason
    Svensson, Lennart
    Xia, Yuxuan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 2600 - 2610
  • [7] Robust Poisson Multi-Bernoulli Mixture Filter With Unknown Detection Probability
    Li, Guchong
    Kong, Lingjiang
    Yi, Wei
    Li, Xiaolong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (01) : 886 - 899
  • [8] Multiple Model Poisson Multi-Bernoulli Mixture Filter for Maneuvering Targets
    Li, Guchong
    Kong, Lingjiang
    Yi, Wei
    Li, Xiaolong
    IEEE SENSORS JOURNAL, 2021, 21 (03) : 3143 - 3154
  • [9] Poisson multi-bernoulli mixture filter for enhanced tracking of spawning targets
    Mirsadraei, Iman
    Dehghan, Seyed Mohammad-Mahdi
    Mofrad, Reza Fatemi
    DIGITAL SIGNAL PROCESSING, 2025, 162
  • [10] A Poisson multi-Bernoulli filter with target spawning
    Su, Zhenzhen
    Ji, Hongbing
    Zhang, Yongquan
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,