Green's Function and Existence Results for Solutions of Semipositone Nonlinear Euler-Bernoulli Beam Equations with Neumann Boundary Conditions

被引:1
|
作者
Wang, Jingjing [1 ]
Gao, Chenghua [1 ]
He, Xingyue [2 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
[2] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
semipositone; Euler-Bernoulli beam equations; Green's function; positive solutions; Neumann boundary value problem; POSITIVE SOLUTIONS; NODAL SOLUTIONS; ELASTIC BEAM; 4TH-ORDER;
D O I
10.1134/S0001434623030288
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
this paper, we are concerned with the existence and multiplicity of positive solutions of the boundary value problem for the fourth-order semipositone nonlinear Euler-Bernoulli beam equation { y((4))(x) + (? + ?)y''(x) + ?? y(x) = ?f (x, y(x)), x E [0, 1], y'(0) = y'(1) = y'''(0) = y'''(1) = 0, where ? and ? are constants, ? > 0 is a parameter, and f E C([0, 1] x R+, R) is a function satisfying f (x, y) > -X for some positive constant X; here R+ := [0, 8). The paper is concentrated on applications of the Green's function of the above problem to the derivation of the existence and multiplicity results for the positive solutions. One example is also given to demonstrate the results.
引用
收藏
页码:574 / 583
页数:10
相关论文
共 50 条
  • [1] Green’s Function and Existence Results for Solutions of Semipositone Nonlinear Euler–Bernoulli Beam Equations with Neumann Boundary Conditions
    Jingjing Wang
    Chenghua Gao
    Xingyue He
    Mathematical Notes, 2023, 113 : 574 - 583
  • [2] Global structure of positive solutions for semipositone nonlinear Euler-Bernoulli beam equation with Neumann boundary conditions
    Wang, Jingjing
    Gao, Chenghua
    Lu, Yanqiong
    QUAESTIONES MATHEMATICAE, 2023, 46 (04) : 641 - 669
  • [3] PERIODIC SOLUTIONS TO NONLINEAR EULER-BERNOULLI BEAM EQUATIONS
    Chen, Bochao
    Gao, Yixian
    Li, Yong
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (07) : 2005 - 2034
  • [4] A monotone iteration for a nonlinear Euler-Bernoulli beam equation with indefinite weight and Neumann boundary conditions
    Wang, Jingjing
    Gao, Chenghua
    He, Xingyue
    OPEN MATHEMATICS, 2022, 20 (01): : 1594 - 1609
  • [5] Matching Boundary Conditions for the Euler-Bernoulli Beam
    Feng, Yaoqi
    Wang, Xianming
    SHOCK AND VIBRATION, 2021, 2021
  • [6] On generalized nonlinear Euler-Bernoulli Beam type equations
    Khaldi, Rabah
    Guezane-Lakoud, Assia
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2018, 10 (01) : 90 - 100
  • [7] Artificial boundary conditions for Euler-Bernoulli beam equation
    Tang, Shao-Qiang
    Karpov, Eduard G.
    ACTA MECHANICA SINICA, 2014, 30 (05) : 687 - 692
  • [8] Artificial boundary conditions for Euler-Bernoulli beam equation
    Shao-Qiang Tang
    Eduard G. Karpov
    Acta Mechanica Sinica, 2014, 30 : 687 - 692
  • [9] BOUNDARY CONTROLLABILITY OF COUPLED DEGENERATE EULER-BERNOULLI BEAM EQUATIONS
    Akil, Mohammad
    Azzaoui, Mohamed
    Fragnelli, Genni
    Salhi, Jawad
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2025,
  • [10] On initial conditions for a boundary stabilized hybrid Euler-Bernoulli beam
    Sujit K. Bose
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2001, 111 : 365 - 370