VFLH: A Following-the-Leader-History Based Algorithm for Adaptive Online Convex Optimization with Stochastic Constraints

被引:1
|
作者
Yang, Yifan [1 ]
Chen, Lin [2 ]
Zhou, Pan [3 ]
Ding, Xiaofeng [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[2] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Cyber Sci & Engn, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive regret; online convex optimization; constrained optimization;
D O I
10.1109/ICTAI59109.2023.00033
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper considers online convex optimization (OCO) with generated i.i.d. stochastic constraints, where the performance is measured by adaptive regret. The stochastic constraints are disclosed at each round to the learner after the decision is made. Different from the previous non-adaptive constrained OCO algorithm which is directly generalized from the static online gradient descent algorithm, we propose the novel Virtual Queue-based Following-the-Leader-History (VFLH) strategy to make the constrained OCO algorithm adaptive. In this framework, the algorithm generalizes experts that deal with the static constrained optimization problem within specified time intervals. Subsequently, it combines the predictions of active experts to produce a final choice and unify the average regret and constraints virtual queue. The algorithm's performance is evaluated based on two metrics: the bounds of constraint violation and regret. To address the difficulty of proving the constraint violation bound under the adaptive setting, we first employ the multi-objective drift analysis approach to handle the constraints virtual queue. Further analysis of the regret bound and the numerical results also supports the performance of the newly proposed algorithm.
引用
收藏
页码:172 / 177
页数:6
相关论文
共 50 条
  • [1] Online Convex Optimization with Stochastic Constraints
    Yu, Hao
    Neely, Michael J.
    Wei, Xiaohan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [2] A stochastic conditional gradient algorithm for decentralized online convex optimization
    Nguyen Kim Thang
    Srivastav, Abhinav
    Trystram, Denis
    Youssef, Paul
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2022, 169 : 334 - 351
  • [3] An adaptive online learning algorithm for distributed convex optimization with coupled constraints over unbalanced directed graphs
    Gu, Chuanye
    Li, Jueyou
    Wu, Zhiyou
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (13): : 7548 - 7570
  • [4] Adaptive Algorithms for Online Convex Optimization with Long-term Constraints
    Jenatton, Rodolphe
    Huang, Jim C.
    Archambeau, Cedric
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [5] ON CONVERGENCE RATE OF DISTRIBUTED STOCHASTIC GRADIENT ALGORITHM FOR CONVEX OPTIMIZATION WITH INEQUALITY CONSTRAINTS
    Yuan, Deming
    Ho, Daniel W. C.
    Hong, Yiguang
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (05) : 2872 - 2892
  • [6] An online convex optimization algorithm for controlling linear systems with state and input constraints
    Nonhoff, Marko
    Mueller, Matthias A.
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 2523 - 2528
  • [7] A GENERALIZED PROPORTIONATE ADAPTIVE ALGORITHM BASED ON CONVEX OPTIMIZATION
    Liu, Jianming
    Grant, Steven L.
    2014 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (CHINASIP), 2014, : 748 - 752
  • [8] Adaptive Penalty-Based Distributed Stochastic Convex Optimization
    Towfic, Zaid J.
    Sayed, Ali H.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (15) : 3924 - 3938
  • [9] Hybrid leader based optimization: a new stochastic optimization algorithm for solving optimization applications
    Mohammad Dehghani
    Pavel Trojovský
    Scientific Reports, 12
  • [10] Hybrid leader based optimization: a new stochastic optimization algorithm for solving optimization applications
    Dehghani, Mohammad
    Trojovsky, Pavel
    SCIENTIFIC REPORTS, 2022, 12 (01)